-
赤泥是氧化铝提取过程中产生的有害碱性固体废物[1],每生产1 t氧化铝约产生1~2 t赤泥[2]。世界范围内的赤泥堆存量大约为4.5×109 t,且每年按约1.2×108 t增加[3]。2020年,我国赤泥产生量超过1×108 t,累积堆存量已达到1.6×109 t[4],占用大量土地,造成土地污染、空气粉尘污染及地下水污染等环境问题[5-6]。赤泥具有高盐性、高碱性、颗粒细小、养分极度缺乏、植物难以生长、生态重建难等特点[7];脱水矿泥含水量高、粒度小,堆存时易形成“超架空结构”,存在溃坝风险等特点[8]。
目前,赤泥控碱的主要方法有酸浸法、盐类浸出法、生物调碱法等[9]。无机酸可以中和赤泥中的自由碱以及化学结合碱[10],但其存在酸用量大、易造成二次污染[4]。FeCl3对赤泥具有一定的控碱效果,同时,随着陈化时间的延长,降碱效果更好[11]。MgCl2对赤泥有良好的控碱效果[12],同时,能够补充赤泥、矿泥壤质化壤土的镁含量,以满足植物生长所需元素。石膏和有机物的添加降低了铝土矿残渣的碱度和盐度,利于生物定植[13]。植物生长对赤泥的 pH、有机质、水稳定聚集和结构稳定性等方面有积极影响[14]。目前,对赤泥进行控碱之后,与矿泥进行混合,并添加肥料和种植植物的壤质化处置方式暂未见报道。
生物有机肥含有大量有机质、植物生长必需元素以及大量功能微生物,同时能改善土壤理化性质、补充微生物[15-16]。鬼针草是1年生菊科草本植物,抗逆性强,自我繁殖能力极强,生长快,生物量大等特点[17],可作为赤泥矿泥壤质化生态修复的先锋植物。本研究将添加组合药剂后的改性赤泥 (DBR) ,与脱水矿泥 (MS) 按1∶4 (干重比) 进行混合,得到壤质化壤土,同时配施生物有机肥、种植鬼针草进行生态修复,探索赤泥、矿泥壤质化生态修复的可行性,拟为矿山采空区矿坑生态修复提供参考。
生物有机肥和鬼针草对赤泥、矿泥壤质化生态修复的影响
Effects of bio-organic fertilizer and sticktights on the ecological restoration of bauxite residue and dehydrated mineral slime loam disposal
-
摘要: 为解决赤泥、矿泥规模化安全处置问题,以拜耳法改性赤泥和脱水矿泥为研究对象,配施生物有机肥和种植鬼针草,通过分析壤质化壤土的理化指标和矿相变化,探究生物有机肥和种植鬼针草对赤泥、矿泥壤质化生态修复的影响。结果表明,壤质化壤土的理化性质随配施生物有机肥比例的增加而改善,鬼针草生长越旺盛。其中,鬼针草在配施3%生物有机肥的壤质化壤土中平均长至87.0 cm,叶片数平均257 片,pH和电导率分别降至7.87和429.01 μS·cm−1。Pearson相关性分析结果表明,增加有机质对壤质化生态修复起积极作用。壤质化处置60 d时,配施1.5%生物有机肥,碱性化学结合碱和Na质量分数减少,形成较大的团聚体。本研究结果可为赤泥、矿泥壤质化生态修复提供参考。Abstract: In order to solve the problem of large-scale safe disposal of bauxite residue and dehydrated mineral slime, the Bayer method dealkalized bauxite residue and dehydrated mineral slime were taken as the research object, and bio-organic fertilizer and planting of sticktights were applied. The physical and chemical indexes and mineral phase changes of loam soils were analyzed, and the effects of bio-organic fertilizer and planting sticktights on the loam ecological restoration of bauxite residue and dehydrated mineral slime were explored. The results showed that physicochemical properties of loam soils were improved with the increase of the proportion of bio-organic fertilizer application, and the growth of sticktights was more vigorous. Among them, the average length of sticktights was 87.0 cm and the average number of leaves was 257 in loam soils with 3% bio-organic fertilizer, the pH and electrical conductivity decreased to 7.87 and 429.01 μS·cm−1. The results of Pearson correlation analysis showed that increasing organic matter played a positive role in the restoration of loam ecology. After 60 days of treatments, 1.5% bio-organic fertilizer was applied, the mass fraction of alkaline chemical combination alkali and Na decreased, and large aggregates were formed. The results of this study can provide a reference for the ecological restoration of bauxite residue and dehydrated mineral slime.
-
表 1 赤泥、脱水矿泥的化学成分
Table 1. Chemical composition of bauxite residue and dehydrated mineral slime %
供试样品 Al2O3 SiO2 Fe2O3 TiO2 CaO Na2O MgO 其他 赤泥 11.7 15.2 44.5 — 10.3 2.7 — 15.6 脱水矿泥 31.8 28.1 12.0 3.7 0.7 1.1 4.1 12.2 注: “—”表示未检出。 表 2 赤泥、脱水矿泥和部分壤土矿相组成
Table 2. Mineral phase contents of bauxite residue, dehydrated mineral slime and some loam soils
% 供考察原料 BR MS 0 d 60 d 0 1% 1.5% 3% S−0 S−1% S−1.5% CK−1% CK−1.5% CK−3% 钙霞石 13.6 6.4 7.1 6.5 5.3 5.2 4.1 2.9 4 5.1 5.0 4.9 钙矾石 13.9 — 4.4 3.3 3.6 3.9 — — 3.9 4 4.2 4.6 方钠石 1.4 — 0.7 0.4 0.6 — 0.1 0.8 0.4 — — — 水镁石 — 2.8 3.9 3.5 3.9 4.1 1.2 5 5.3 4.4 4.9 5.3 菱镁矿 — 4.6 6.6 3.4 2.3 2.4 2.5 4.9 3.2 3.3 1.4 0.5 三水铝石 2.4 27.7 20 21.7 21.8 23.4 22.4 20.5 21.6 19.1 18.7 21.6 注: “—”表示未检出。 -
[1] KUSRINI E, ZULYS A, YOGASWARA A, et al. Extraction and enrichment of lanthanide from Indonesian low grade bauxite using sulfuric acid heap leaching and phytic acid[J]. Engineering Journal, 2020, 24(4): 305-314. doi: 10.4186/ej.2020.24.4.305 [2] ZHU F, HUANG N, XUE S G, et al. Effects of binding materials on microaggregate size distribution in bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(23): 23867-23875. doi: 10.1007/s11356-016-7626-9 [3] ZHU F, XUE S G, HARTLEY W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863. doi: 10.1007/s11356-015-5537-9 [4] 陈珊, 陈允建, 谢鑫, 等. 赤泥脱碱方法及其机理研究进展[J]. 硅酸盐通报, 2021, 40(10): 3414-3426. doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110033 [5] PANDA I, JAIN S, DAS S K, et al. Characterization of red mud as a structural fill and embankment material using bioremediation[J]. International Biodeterioration & Biodegradation, 2017, 119: 368-376. [6] GELENCSÉR A, KOVÁTS N, TURÓCZI B, et al. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust[J]. Environmental Science & Technology, 2011, 45(4): 1608-1615. [7] 黄玲, 李义伟, 薛生国, 等. 氧化铝赤泥堆场盐分组成变化[J]. 中国有色金属学报, 2016, 26(11): 2433-2439. doi: 10.19476/j.ysxb.1004.0609.2016.11.021 [8] 陈斌, 翟文龙, 祝怡斌. 铝土矿矿泥脱水及固化研究进展[J]. 中国矿业, 2020, 29(S2): 368-370. doi: 10.12075/j.issn.1004-4051.2020.S2.001 [9] 薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828. doi: 10.13671/j.hjkxxb.2017.0144 [10] KONG X F, LI M, XUE S G, et al. Acid transformation of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324: 382-390. doi: 10.1016/j.jhazmat.2016.10.073 [11] 成官文, 张燎, 韦桥权, 等. FeCl3赤泥控碱及离子效应研究[J]. 安全与环境学报, 2022, 22(2): 996-1005. [12] 张宇玲, 成官文, 韦桥权, 等. MgCl2和脱水矿泥对赤泥盐碱性的调控[J]. 环境工程学报, 2022, 16(3): 937-945. doi: 10.12030/j.cjee.202111076 [13] BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment[J]. Environmental Science & Technology, 2018, 52(1): 152-161. [14] ZHU F, LI X F, XUE S G, et al. Natural plant colonization improves the physical condition of bauxite residue over time[J]. Environmental Science and Pollution Research, 2016, 23(22): 22897-22905. doi: 10.1007/s11356-016-7508-1 [15] 常肖锐, 叶项宇, 王政, 等. 生物有机肥研究及应用进展[J]. 现代农业科技, 2021(22): 145-148. doi: 10.3969/j.issn.1007-5739.2021.22.061 [16] 张俊峰, 颉建明, 张玉鑫, 等. 生物有机肥部分替代化肥对日光温室番茄生长与光合特性及肥料利用率的影响[J]. 北方园艺, 2022(11): 44-50. [17] 杨霆, 黄美兰, 潘懿. 鬼针草和桑叶饲用原材料可行性分析[J]. 农业技术与装备, 2021(12): 17-18. doi: 10.3969/j.issn.1673-887X.2021.12.006 [18] 鲍士旦. 土壤农化分析[M]. 中国农业出版社, 2000: 193-195. [19] LI Y W, LUO X H, LI C X, et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment[J]. Journal of Central South University, 2019, 26(2): 361-372. doi: 10.1007/s11771-019-4008-8 [20] 中华人民共和国农业部. 土壤检测第6部分土壤有机质的测定: NY/T 1121.6-2006 [S]. 北京: 中国农业出版社, 2006. [21] 中华人民共和国农业部. 土壤检测第4部分土壤容重的测定: NY/T 1121.4-2006 [S]. 北京: 中国农业出版社, 2006. [22] 段绍彦, 成官文, 解庆林, 等. 平果铝土矿矿区周边坡地、耕地土壤基础理化性质空间差异[J]. 桂林理工大学学报, 2021, 71(1): 201-209. doi: 10.3969/j.issn.1674-9057.2021.01.025 [23] JONES B E H, HAYNES R J, PHILLIPS I R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties[J]. Journal of Environmental Management, 2010, 91(11): 2281-2288. doi: 10.1016/j.jenvman.2010.06.013 [24] ANGIN I, ASLANTAS R, GUNES A, et al. Effects of sewage sludge amendment on some soil properties, growth, yield and nutrient content of raspberry (Rubus idaeus L. )[J]. Erwerbs-Obstbau, 2017, 59(2): 93-99. doi: 10.1007/s10341-016-0303-9 [25] 黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分、酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906-918. doi: 10.11674/zwyf.2011.1104 [26] SANTINI T C, KERR J L, WARREN L A. Microbially-driven strategies for bioremediation of bauxite residue[J]. Journal of Hazardous Materials, 2015, 293: 131-157. doi: 10.1016/j.jhazmat.2015.03.024 [27] XUE S G, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Environmental Sciences, 2019, 77: 1-10. doi: 10.1016/j.jes.2018.05.016 [28] 莫思琪, 曹旖旎, 谭倩. 根系分泌物在重金属污染土壤生态修复中的作用机制研究进展[J]. 生态学杂志, 2022, 41(2): 382-392. doi: 10.13292/j.1000-4890.202201.008 [29] 喻阳华, 吴永贵, 喻理飞, 等. 磷石膏与碳酸钙对赤泥脱碱的效果及可能机理[J]. 无机盐工业, 2014, 46(10): 58-61. doi: 10.3969/j.issn.1006-4990.2014.10.015 [30] 环境保护部. 矿山生态环境保护与恢复治理技术规范(试行): HJ 651-2013[S]. 北京: 中国环境科学出版社, 2013. [31] BURKE I T, PEACOCK C L, LOCKWOOD C L, et al. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater[J]. Environmental Science & Technology, 2013, 47(12): 6527-6535. [32] ZHU F, LIAO J X, XUE S G, et al. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography[J]. Science of the Total Environment, 2016, 573: 155-163. doi: 10.1016/j.scitotenv.2016.08.108 [33] 董远鹏, 刘喜娟, 董梦阳, 等. 腐殖质和硝酸钙对赤泥团聚体形成的促进作用[J]. 环境污染与防治, 2020, 42(10): 1205-1210. doi: 10.15985/j.cnki.1001-3865.2020.10.004 [34] 胡树翔, 吕十全, 王新, 等. 生物质改良对赤泥土壤化修复的促进作用[EB/OL]. [2022-07-22]. http://kns.cnki.net/kcms/detail/11.5591.X.20220725.1737.008.html.