-
我国污泥产量日渐增多,污泥的处理处置问题日益突出。对污泥进行脱水是最终处置前必不可少的环节,也是实现污泥减量的方式之一[1]。过硫酸盐高级氧化调理技术是近年来发展起来的新兴氧化技术,主要活性物质为SO4−·,具有氧化性强、稳定性高、适用范围广等优点[2],可以有效破坏污泥絮体和污泥微生物细胞,释放胞内结合水,改善污泥脱水性能[3],因此其在污泥调理中具有很高的研究价值。活化过硫酸盐的方法有热活化、微波活化、超声波活化、碱活化、过渡金属活化等[4]。其中,过渡金属Fe2+因为价格低廉、无污染而得到广泛关注[5]。如ZHEN等[6]采用Fe2+活化PDS调理污泥脱水,在1.2 mmol∙g−1 VSS PDS、1.5 mmol∙g−1 VSS Fe2+、pH 3.00~8.50条件下,1 min内CST可降低88.80%。这是因为,Fe2+活化过硫酸盐产生的强氧化自由基可以破坏微生物细胞、EPS结构和其中的某些特定的荧光官能团遭到显著破坏,使得絮体中包含的结合水被释放出来,污泥的脱水性能得到改善[7]。然而,Fe2+在溶液中不稳定,且过量存在时容易淬灭SO4−·,导致其活化效率较低[8-9]。为此,研究人员将铁负载在活性炭等材料表面来提高其催化效率[10]。例如,丁敬林[11]采用生物质和高铁酸钾共热解制备负载纳米零价铁的生物炭活化过硫酸盐去除雌二醇 (E2) ,发现其对E2的去除效果明显优于单独生物炭和纳米零价铁;WANG等[12]采用氧化铁改性废咖啡渣生物炭联合过硫酸盐对氯四环素的去除率显著提高,达到83.48%。由此可知,采用生物质炭负载铁元素活化过硫酸盐可在一定程度上提高催化氧化效率,解决Fe2+活化存在的问题,但目前该方法在调理污泥脱水方面研究的较少,有关机理需要深入探讨。
污水厂污泥中有机质含量较高,有文献[13-14]证明,可以通过热解将其制备成具有丰富孔隙结构和表面官能团的污泥生物炭。而给水厂含铁污泥中铁含量较多,可以作为铁源。如果将给水厂铁污泥和污水厂污泥共热解制备铁基污泥炭材料,不仅可以解决Fe2+催化效率较低的问题,还可实现2种污泥的资源化利用,有利于水厂的碳减排。此外,还研究表明,在污泥调理过程中,炭材料还可以作为骨架颗粒,降低污泥的可压缩性,构建过水通道,有利于污泥的脱水性能的提高[15-16]。
本研究拟以给水厂含铁污泥为铁源,污水厂污泥为碳源,将2者混合后热解制备铁基污泥炭 (Iron-SBC) ,探究Iron-SBC的最佳制备条件并对其进行了表征,对比Iron-SBC/PDS体系与其他体系对污泥的调理效果,并探究其活化机制,以期为污泥调理中过硫酸盐的活化提供参考。
铁基污泥炭活化过硫酸盐调理污泥脱水
Preparation of iron-based sludge biochar and its application in sludge dewatering as a activator for persulfate
-
摘要: 利用给水厂含铁污泥和污水厂污泥混合热解制备铁基污泥炭 (Iron-SBC) ,作为过硫酸盐活化剂,用于调理污泥脱水。研究了Iron-SBC的最佳制备条件及其活化PDS调理污泥脱水的效果,并探究其活化机制。结果表明,Iron-SBC最佳制备条件为给水厂含铁污泥和污水厂污泥比例3∶1、热解温度800 ℃、热解时间1 h。XRD、FT-IR及BET分析结果表明,与原混合污泥相比,Iron-SBC比表面积和孔容增大,表面负载了Fe0和FeO、Fe2O3、Fe3O4等铁的氧化物,并含有大量官能团。在活化PDS过程中,Iron-SBC表面的Fe0、铁的氧化物及官能团等均能有效活化PDS,产生SO4−·和·OH自由基。XPS分析结果表明,Iron-SBC表面部分Fe2+被氧化为Fe3+,官能团C-C、C-OH和C=O等被氧化,并有Fe-O键生成。经Iron-SBC/PDS调理污泥后,CST、SRF和Wc分别由原泥的19.1 s、14.9×1012 m·kg−1和85.06%下降到8.4 s、5.4×1012 m·kg−1和73.48%。本研究结果可为含铁污泥和剩余污泥资源化及污泥深度脱水提供参考。Abstract: Iron-based sludge biochar (Iron-SBC) was prepared by pyrolysis using mixed iron-contained sludge from water supply plant and waste activated sludge from sewage treatment plant. It was used as a activator for persulfate to condition sludge for dewatering. The optimal preparation conditions of Iron-SBC, and the effect and mechanism of PDS/Iron-SBC on sludge dewatering were studied. The results showed that the optimum preparation conditions of Iron-SBC were as follows: the ratio of iron-contained sludge to waste activated sludge was 3:1, pyrolysis temperature was 800 ℃, and the pyrolysis time was 1 hour. XRD, FT-IR and BET analysis showed that compared with the original mixed sludge, the specific surface area and pore volume of Iron-SBC increased, and its surface was loaded with iron oxides, as Fe0, FeO, Fe2O3 and Fe3O4, and contained a large number of functional groups. During the process of activating PDS, Fe0, iron oxides and functional groups on the surface of Iron-SBC all could effectively activate PDS and generate SO4−· and ·OH free radicals. XPS analysis showed that Fe2+ on the surface of Iron-SBC was oxidized to Fe3+, and functional groups as C-C, C-OH and C=O were also oxidized, and Fe-O bonds were formed. After the sludge treatment by Iron-SBC/PDS, CST, SRF and Wc were reduced from 19.1 s, 14.9×1012 m∙kg−1 and 85.06% of the raw sludge to 8.4 s, 5.4×1012 m∙kg−1 and 73.48%, respectively. The results of this study can provide a technical reference for the utilization of iron-contained sludge and waste activated sludge, and also for the sludge deep dewatering.
-
Key words:
- iron-based sludge biochar /
- persulfate /
- sludge dewatering /
- advanced oxidation
-
表 1 给水厂脱水污泥与污水厂脱水污泥的化学组成
Table 1. Chemical composition of water supply plant dewatered sludge and sewage dewatered sludge %
供试污泥 C O Si Al Fe 其他 给水厂含铁污泥 40.09 34.76 4.97 5.92 8.14 6.12 污水厂污泥 48.49 34.62 3.45 2.96 0.94 9.54 表 2 剩余污泥的基本参数
Table 2. Basic parameters of waste activated sludge
TSS/
(g·L−1)含水
率/%滤饼
含水率/%CST/s SRF/
(×1012 m·kg−1)pH 16.0±0.3 98.5±0.2 85.12±0.53 19.1±0.4 14.9±0.2 6.68±0.1 表 3 MS和Iron-SBC的比表面积及孔容
Table 3. Specific surface area and pore volume of MS and Iron-SBC
样品名称 比表面积/(m2·g−1) 孔容/(cm3·g−1) MS 38.22 0.052 Iron-SBC 89.51 0.158 -
[1] 陈彦秀, 李刚. 市政污泥脱水技术研究进展[J]. 环境科学与技术, 2021, 44(S1): 308-311. doi: 10.19672/j.cnki.1003-6504.2021.S1.049 [2] LI Y F, PAN L Y, ZHU Y Q, et al. How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?[J]. Water Research, 2019, 163: 114912. doi: 10.1016/j.watres.2019.114912 [3] 张彦平, 裴佳华, 郑松超, 等. 污泥炭负载Fe2+活化过硫酸盐联合PAM调理污泥[J]. 环境科学与技术, 2021, 44(12): 113-119. [4] LIU C G, WU B, CHEN X E. Sulfate radical-based oxidation for sludge treatment: a review[J]. Chemical Engineering Journal, 2018, 335: 865-875. doi: 10.1016/j.cej.2017.10.162 [5] GE D D, DONG Y T, ZHANG W R, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146 [6] ZHEN G Y, LU X Q, ZHAO Y C, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116: 259-265. doi: 10.1016/j.biortech.2012.01.170 [7] ZHEN G Y, LU X Q, LI Y Y, et al. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 119: 7-14. doi: 10.1016/j.biortech.2012.05.115 [8] XIONG Q, ZHOU M, YANG H, et al. Improving the dewaterability of sewage sludge using rice husk and Fe2+-sodium persulfate oxidation[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 872-881. [9] FENG Y, ZHONG J, ZHANG L Y, et al. Activation of peroxymo nosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: electron transfer and transformation products[J]. Separation and Purification Technology, 2020, 247: 116942. doi: 10.1016/j.seppur.2020.116942 [10] 简铃, 严丽丽, 鞠梦灿, 等. 铁/炭复合材料的制备及其类Fenton反应的研究进展[J]. 应用化工, 2023,52(2): 625-632. [11] 丁敬林. 负载纳米零价铁的生物炭活化过硫酸盐去除雌二醇的研究[D]. 长沙: 湖南大学, 2021. [12] WANG Y, TIAN Q B, YANG G Y, et al. Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system[J]. Chemosphere, 2022, 301: 134654. doi: 10.1016/j.chemosphere.2022.134654 [13] 李玉双, 杨嘉鑫, 魏建兵, 等. 城市污泥资源化利用技术研究进展[J]. 工业水处理, 2022, 42(12): 41-46. [14] 郝晓地,李佳勇,郝丽婷,等.剩余污泥制取生物炭可行性分析与评价[J/OL].中国给水排水(2023-03-02). http://kns.cnki.net/kcms/detail/12.1073.tu.20230109.1728.001.html. [15] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029 [16] 张彦平, 裴佳华, 高珊珊, 等. 生物质材料用于污泥深度脱水的研究进展[J]. 工业水处理, 2022, 42(7): 24-32. [17] HU L L, LIAO Y, HE C, et al. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system[J]. Water Science & Technology, 2015, 72(2): 245-251. [18] 王澜. 基于Fe2+/HSO5-体系的污泥氧化调理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [19] 曾婧, 荀久玉. 过硫酸钠与PAM联合改善污泥脱水效果的研究[J]. 江西化工, 2020, 150(4): 45-49. doi: 10.3969/j.issn.1008-3103.2020.04.015 [20] WU H L, CHE X D, DING Z H, et al. Release of soluble elements from biochars derived from various biomass feedstocks[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1905-1915. doi: 10.1007/s11356-015-5451-1 [21] LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environmental Science and Pollution Research International, 2018, 25(31): 31136-31148. doi: 10.1007/s11356-018-3064-1 [22] 喻江维. 臭氧与零价铁/铁基生物炭协同调理市政污泥促进污泥深度脱水的研究[D]. 武汉: 华中科技大学, 2018. [23] 邹意义, 袁怡, 沈涛, 等. FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究[J]. 环境科学学报, 2021, 41(9): 3478-3486. [24] ALIREZA N E, AREZOO S. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline[J]. Chemosphere, 2014, 107: 136-144. doi: 10.1016/j.chemosphere.2014.02.015 [25] 张倩, 谢陈飞洋, 仇玥, 等. Fe/污泥基生物炭持久活化过硫酸盐降解酸性橙G[J]. 中国环境科学, 2019, 39(9): 3879-3886. doi: 10.3969/j.issn.1000-6923.2019.09.034 [26] 胡益, 李培生, 余亮英. 污泥与煤混烧中含碳官能团的演化过程[J]. 武汉大学学报(工学版), 2013, 46(5): 649-653. [27] 胡艳军, 王琳洁, 卢艳军, 等. 污泥含碳有机官能团分布及其模型化合物构建[J]. 中国环境科学, 2019, 39(9): 3872-3878. doi: 10.3969/j.issn.1000-6923.2019.09.033 [28] WU W, ZHU S S, HUANG X C, et al. Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions[J]. Journal of Hazardous Materials, 2021, 408: 124454. doi: 10.1016/j.jhazmat.2020.124454 [29] OU Y D, YAN J, QIAN L, et al. Degradation of 1, 4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184: 609-617. doi: 10.1016/j.chemosphere.2017.05.156 [30] 方帅. 地下水厂铁泥制备磁性吸附剂的研究[D]. 长春: 东北师范大学, 2015. [31] 高少敏. 磁性氧化铈材料的制备及其在染料废水处理中的应用[D]. 上海: 上海应用技术大学, 2019. [32] XU Z H, ZHOU Y W, SUN Z H, et al. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon[J]. Chemosphere, 2020, 241: 125120. doi: 10.1016/j.chemosphere.2019.125120 [33] LIU X Y, YANG L, ZHAO H T, et al. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils[J]. Science of the Total Environment, 2020, 708(C): 134479. [34] 郑松超. 污泥炭负载Fe(Ⅱ)活化过硫酸盐对污泥脱水及重金属去除的研究[D]. 天津: 河北工业大学, 2021. [35] 万甜, 闫幸幸, 任杰辉, 等. Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1): 189-196. doi: 10.12030/j.cjee.201902067 [36] 彭小明, 吴健群, 戴红玲, 等. Ni-N-C单原子催化剂活化过硫酸盐降解苯酚[J]. 高等学校化学学报, 2021, 42(8): 2581-2591. doi: 10.7503/cjcu20210009 [37] WANG D, SUN Y, TANG D C, et al. Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: a case study of di-(2-ethylhexyl) phthalate removal[J]. Journal of Hazardous Materials, 2020, 384: 121321. doi: 10.1016/j.jhazmat.2019.121321 [38] 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. doi: 10.16085/j.issn.1000-6613.2019-1833 [39] 梁宇坤. 生物炭负载纳米零价铁镍激活过硫酸盐降解诺氟沙星废水[D]. 太原: 太原理工大学, 2019. [40] LI J X, ZHANG X Y, LIU M C, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(5): 2988-2997. [41] HAN Q, WANG Z H, XIA J F, et al. Facile and tunable fabrication of Fe3O4 /graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Talanta, 2012, 101: 388-395. doi: 10.1016/j.talanta.2012.09.046 [42] 曹华莉. 基于过硫酸盐的铁基复合材料制备及去除活性黑5的效能研究[D]. 南昌: 南昌大学, 2020.