-
河流生态系统是连接陆地与海洋的纽带,也是重要的氮汇和碳汇,对陆地生态系统输出营养盐和有机质的迁移转化过程起主要作用。而沉积物作为河流生态系统的重要组成部分,不仅是流域C、N、P等营养元素的重要蓄积库,也是许多环境污染物的接收器[1]。输入河流中的 NH4+ 和NO3−发生着以各种微生物为媒介的硝化 (nitration) 、反硝化 (denitrification) 、异化还原成铵 (dissimilatory nitrate reduction to ammonium,DNRA) 和厌氧氨氧化 (anaerobic ammonium oxidation,ANAMMOX) 等活跃的生物地球化学反应,使河流中的氮元素以氮气形式返回大气圈,以达到河流中除氮和减少温室气体氧化亚氮 (N2O) 排放的目的[2-4]。甲烷 (CH4) 对全球变暖的贡献占22%,是除了N2O和CO2气体外最重要的温室气体[5-7]。河流也是大气中CH4主要排放源之一。目前,大气中有50%CH4来自于河流、河口等水生生态系统[8-10]。在水环境中广泛存在着厌氧甲烷氧化 (anaerobic oxidation to methane,AOM) ,而反硝化型厌氧甲烷氧化 (denitrifying anaerobic methane oxidation,DAMO) 能在厌氧条件下使甲烷直接作为碳源,以硝酸盐作为电子供体发生脱氮反应。该反应能减少甲烷排放的同时,还能达到除氮目的,因此,被认为是淡水环境中连接碳和氮循环的新型微生物过程,对于厌氧环境中甲烷消除具有重要意义[7,11-14]。国内外研究学者针对湖泊[12,15]、湿地[16-17]及河流[13,18]等多地淡水环境开展了相关研究,但针对易受农业径流污染的河流及河口环境研究较少[11,13,15-18]。城市内陆河流营养盐及电子供体较为丰富、有机质和硝酸盐含量较高、氧化还原电位梯度频繁交迭,为各种以硝酸盐为电子受体的生物化学反应提供了最大反应驱动力,促进了碳氮循环。
西溪为厦门市最大的内陆入海河流。该河流及河口环境的厌氧和好氧交界面发生着多种生物地球化学反应[12,19-20]。西溪所在流域存在较多人类活动,不同地区受人类影响的程度不同。因此,针对西溪中脱氮反应速率及连接碳氮循环的反硝化型厌氧甲烷氧化反应速率研究是很有必要。
本研究选取西溪中下游为研究对象,在2021—2022年期间沿溪流进行季节性采样。基于15N以及13C同位素配对技术,开展沉积物培养实验,评估西溪流域中下游沉积物季节性的反硝化和厌氧氨氧化潜在速率及脱氮贡献,同时也验证反硝化型厌氧甲烷氧化反应的发生并测定其反应速率,并结合上覆水等理化特征分析,探讨了沉积物中生物化学反应潜在速率时空及季节性差异的原因,以掌握河流内部反硝化、厌氧氨氧化作用及反硝化型厌氧甲烷氧化 (DAMO) 的变化规律,从而揭示生态环境中河流生态系统在甲烷参与下碳、氮的动态变化过程,以期为探究该河流中碳氮循环并开展下游沉积物脱氮治理提供参考。
沉积物碳氮交互效应及其对河流水体脱氮治理的影响——以厦门市西溪中下游为例
Interaction effect of sediment carbon and nitrogen and its influence on nitrogen removal in river water —A case study of the middle and lower reaches of Xixi River in Xiamen
-
摘要: 通过福建厦门市内陆河流西溪中下游上覆水及沉积物中碳氮理化指标的时空分布特征,利用碳 (13C) 、氮 (15N) 稳定同位素技术研究了沉积物中厌氧氨氧化 (ANAMMOX) 、反硝化 (denitrification) 及反硝化型厌氧甲烷氧化 (DAMO) 的反应速率及其分布规律。结果表明:西溪中下游上覆水水质总氮为3.02~5.68mg·L−1;利用15N同位素技术测得西溪中下游沉积物中厌氧氨氧化的平均速率为18.953 μmol·m−2·h−1,平均脱氮贡献率为40.13%,反硝化平均速率为27.386 μmol·m−2·h−1,平均贡献率为59.87%;起主要脱氮贡献的为反硝化反应,但厌氧氨氧化的脱氮作用仍不可忽视。利用13C同位素技术测得西溪中下游沉积物中DAMO反应速率为0~6.122 µmol·m−2·h−1,平均速率为1.139 µmol·m−2·h−1。这表明西溪中下游沉积物中存在DAMO反应,可在厌氧条件下以硝酸盐作为电子受体将CH4转化为CO2。在空间上,西溪中下游DAMO速率存在较大差异性;而在时间上,DAMO速率秋季高于冬春季。反硝化与厌氧氨氧化作用对西溪生态系统中脱氮具有重要意义,DAMO在西溪中下游沉积物虽然反应速率较低,但仍然证明了西溪沉积物生态系统存在连接碳氮循环的微生物反应。反硝化、厌氧氨氧化和DAMO的相互协同,在西溪中下游沉积物脱氮治理及相应过程中的温室气体减排中起到重要作用。
-
关键词:
- 河流 /
- 沉积物 /
- 同位素 /
- 脱氮速率 /
- 反硝化型厌氧甲烷氧化
Abstract: Based on the spatial and temporal distribution characteristics of carbon and nitrogen physical and chemical indexes in overlying water and sediments of the middle and lower reaches of Xixi River in Xiamen City, Fujian Province, the reaction rates and distribution of Anaerobic ammonia oxidation ( Anammox ), Denitrification and denitrifying anaerobic methane oxidation ( DAMO ) in sediments were studied by using carbon ( 13C ) and nitrogen ( 15N ) stable isotope techniques. The results showed that the total nitrogen concentration of overlying water in the middle and lower reaches of Xixi River ranged from 3.02 to 5.68 mg·L−1. The average rate of anaerobic ammonia oxidation in the sediments of the middle and lower reaches of Xixi River was 18.953 μmol·m−2·h−1, and the average contribution rate of denitrification was 40.13 %. The average rate of denitrification was 27.386 μmol·m−2·h−1 and the average contribution rate was 59.87 %. The main contribution of denitrification was denitrification, but the denitrification effect of anaerobic ammonia oxidation could not be ignored. The DAMO reaction rate was 0~6.122 μmol·m−2·h−1 and the average rate was 1.139 μmol·m−2·h−1 measured by 13C isotope technique in the sediments of the middle and lower reaches of Xixi River, indicating that there was DAMO reaction in the sediments of the middle and lower reaches of Xixi River, which could convert CH4 into CO2 with nitrate as electron acceptor under anaerobic conditions. In space, the DAMO rate in the middle and lower reaches of Xixi River was quite different; in terms of time, the DAMO rate in autumn was higher than that in winter and spring. Denitrification and anammox were important for nitrogen removal in Xixi ecosystem. Although the reaction rate of DAMO in the sediments of the middle and lower reaches of Xixi was low, it still proved that there were microbial reactions connecting carbon and nitrogen cycles in Xixi sediment ecosystem. Denitrification, anammox and DAMO synergistically played an important role in sediment nitrogen removal and greenhouse gas emission reduction in the middle and lower reaches of Xixi River.-
Key words:
- river /
- sediment /
- isotope /
- nitrogen removal rate /
- denitrifying anaerobic methane oxidation(DAMO)
-
表 1 研究区域上覆水及沉积物孔隙水中理化特征
Table 1. Physicochemical characteristics of overlying water and sediment pore water in the study area
mg·L−1 采样点 上覆水 孔隙水 硝氮 亚硝氮 氨氮 总氮 总有机碳 硝氮 亚硝氮 氨氮 总有机碳 X0 0.850 0.035 0.100 3.02 9.23 0.63 0.03 0.17 3.00 X1 0.744 0.035 0.292 3.22 7.89 0.66 0.03 0.36 3.01 X2 1.585 0.094 0.175 4.89 8.21 1.14 0.09 0.20 4.89 X3 1.475 0.047 0.214 4.52 7.56 1.01 0.04 0.29 4.52 X4 1.324 0.328 2.391 5.68 16.29 0.96 0.30 3.80 5.68 平均值 1.200 0.110 0.630 4.26 9.84 0.88 0.10 0.96 4.22 表 2 沉积物中各氮素理化特征
Table 2. Physicochemical characteristics of nitrogen in sediment
mg·kg−1 采样点 硝氮 亚硝氮 氨氮 有机氮 全氮 X0 7.34 0.24 4.42 2 705 2 717 X1 6.6 0.24 5.38 2 903 2 915 X2 10.58 0.54 4.77 4 558 4 574 X3 10.4 0.35 5.05 4 212 4 228 X4 8.18 1.71 15.81 5 350 5 376 平均值 8.62 0.61 7.09 3 946 3 962 -
[1] XU G P, WANG X F, CHEN L J. Application of principal component analysis for the estimation of source of heavy metal contamination in sugarcane soil[J]. Applied Mechanics and Materials, 2014, 651-653: 1402-1409. doi: 10.4028/www.scientific.net/AMM.651-653.1402 [2] 朱广伟, 陈英旭. 沉积物中有机质的环境行为研究进展[J]. 湖泊科学, 2001, 13(3): 272-279. doi: 10.3321/j.issn:1003-5427.2001.03.012 [3] WANG J F, CHEN J G, DING S M, et al. Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: A case study in Hongfeng Reservoir, Southwest China.[J]. Environmental Pollution, 2016, 219: 858-865. doi: 10.1016/j.envpol.2016.08.013 [4] HARIKA, NARUMANCHI, DISHANT, et al. In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China[C]// 2018 IEEE International Conference on Smart Cloud. 0. [5] WANG J, CAI C, LI Y, et al. Denitrifying anaerobic methane oxidation: A previously overlooked methane sink in intertidal zone[J]. Environmental Science & Technology, 2019, 53(1): 203-212. [6] SIVAN O, ADLER M, PEARSON A, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane[J]. Limnology and Oceanography, 2011, 56(4): 1536-1544. doi: 10.4319/lo.2011.56.4.1536 [7] RAGHOEBARSING A A, POL A, VAND P K, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440: 918-921. doi: 10.1038/nature04617 [8] 保琼莉, 黄益宗. 湿地反硝化型甲烷厌氧氧化研究进展[J]. 生态学杂志, 2019, 38(10): 3202-3210. doi: 10.13292/j.1000-4890.201910.004 [9] 吴红宝. 典型河流生态系统碳氮温室气体扩散传输研究[D]. 芜湖: 安徽师范大学, 2017. [10] BEAULIEU J J, SHUSTER W D, REBHOLZ J A. Nitrous oxide emissions from a large, impounded river: The Ohio River[J]. Environmental Science & Technology, 2010, 44(19): 7527. [11] 王瑞飞, 王亚利, 杨清香. 淡水生态系统中反硝化型厌氧甲烷氧化微生物的研究进展[J]. 环境污染与防治, 2018, 40(12): 1443-1448. doi: 10.15985/j.cnki.1001-3865.2018.12.023 [12] DEUTZMANN J S, STIEF P, BRANDES J, et al. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake[J]. Proceedings of the National Academy of Sciences, 2014, 111(51): 18273-18278. doi: 10.1073/pnas.1411617111 [13] SHEN L D, ZHU Q, LIU S, et al. Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)[J]. Applied Microbiology & Biotechnology, 2014, 98(11): 5029-5038. [14] ETTWIG K F, BUTLER M K, PASLIER D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883 [15] KOJIMA H, TOKIZAWA R, KOGURE K, et al. Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer[J]. Scientific Reports, 2014, 4: 5728. doi: 10.1038/srep05728 [16] SHEN L D, LIU S, HUANG Q, et al. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied & Environmental Microbiology, 2014, 80(24): 7611-7619. [17] HU B L, SHEN L D, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences, 2014, 111(12): 4495-4500. doi: 10.1073/pnas.1318393111 [18] YAN P, LI M, WEI G, et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River Estuary, China[J]. PLOS ONE, 2015, 10(9): e0137996. doi: 10.1371/journal.pone.0137996 [19] SHEN L D, LIY S, ZHU Q, et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 2014, 67(2): 341-349. doi: 10.1007/s00248-013-0330-0 [20] GUILLAUME B, DIDIER J, CORINNE B P, et al. Production and consumption of methane in freshwater lake ecosystems.[J]. Research in Microbiology, 2011, 162(9): 832-847. doi: 10.1016/j.resmic.2011.06.004 [21] SONG G D, LIU S M, KUYPERS M M M, et al. Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist[J]. Limnology and Oceanography:Methods, 2016, 1(9): 63-73. [22] TRIMMER M,NICHOLLS J C,DEFLANDRE B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J]. Applied and Environmental Microbiology, 2003, 69(11): 6447-6454. [23] KUYPERS M M M, SLIEKERS A O, LAVIK G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(10): 608-611. [24] RISGAARD-PETERSEN N, NIELSEN L P, RYSGAARD S, et al. Application of the isotope pairing technique in sediments where anammox and denitrification coexist[J]. Limnology and Oceanography:Methods, 2003, 1(1): 63-73. doi: 10.4319/lom.2003.1.63 [25] CAO W Z, YANG J X, LI Y. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China[J]. Marine Pollution Bulletin, 2016, MPB-07832: 1-7. [26] GUPTA V, SMEMO K A, YAVITT J B, et al. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type[J]. Environmental Science & Technology, 2013, 47(15): 8273-8279. [27] WEISS R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep-Sea Research and Oceanographic Abstracts, 1970, 17(4): 721-735. doi: 10.1016/0011-7471(70)90037-9 [28] WANNINKHOF R. Relationship between gas exchange and wind speed over the ocean[J]. Journal of Geophysical Research:Oceans, 1992, 97(C5): 7373-7382. doi: 10.1029/92JC00188 [29] 陈能汪, 吴杰忠, 洪华生. 九龙江河口区夏季反硝化作用初探[J]. 环境科学, 2011, 32(11): 3229-3234. doi: 10.13227/j.hjkx.2011.11.027 [30] 施瑶. 氮输入对泥炭沼泽碳氮转化的影响研究[D]. 长春: 东北师范大学, 2019. [31] 蒋艾青. 残饵、死鱼及排泄物腐解对山区精养池养殖水质的影响[J]. 现代农业科技, 2007(10): 143-144. doi: 10.3969/j.issn.1007-5739.2007.10.101 [32] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015(1): 95-100. [33] 刘富龙. 氨氮浓度对硝化反应影响的研究[D]. 太原: 太原理工大学, 2009. [34] 徐志伟, 张心昱, 于贵瑞, 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014, 35(8): 3231-3238. doi: 10.13227/j.hjkx.2014.08.056 [35] 王超, 单保庆, 赵钰. 滏阳河水系沉积物硝化速率分布及溶解氧的限制效应[J]. 环境科学学报, 2015, 35(6): 1735-1740. doi: 10.13671/j.hjkxxb.2014.0897 [36] 赵锋, 许海, 詹旭, 等. 太湖春夏两季反硝化与厌氧氨氧化速率的空间差异及其影响因素[J]. 环境科学, 2021, 42(5): 2296-2302. doi: 10.13227/j.hjkx.202008303 [37] 俞琳, 王东启, 邓焕广, 等. 上海市苏州河与崇明岛河流沉积物反硝化速率及其影响因素[J]. 生态与农村环境学报, 2015, 31(1): 100-105. doi: 10.11934/j.issn.1673-4831.2015.01.015 [38] 王子聪, 许海, 詹旭, 等. 天目湖流域沟塘湿地脱氮速率的时空差异[J]. 环境科学研究, 2022, 35(4): 979-988. doi: 10.13198/j.issn.1001-6929.2022.02.01 [39] 王正文, 姚晓龙, 姜星宇, 等. 季节与水文影响下鄱阳湖碟形湖湿地沉积物氮去除功能变化[J]. 长江流域资源与环境, 2022, 31(3): 673-684. [40] 王静, 刘洪杰, 雷禹, 等. 三峡库区小江支流沉积物硝化反硝化速率在蓄水期和泄水期的特征[J]. 环境科学, 2017, 38(3): 946-953. doi: 10.13227/j.hjkx.201606202 [41] 秦红益. 太湖沉积物厌氧氨氧化细菌分布多样性及其活性研究[D]. 南京: 南京师范大学, 2017. [42] 赵永强, 夏永秋, 李博伦, 等. 利用膜进样质谱同时测定河流沉积物反硝化和厌氧氨氧化[J]. 农业环境科学学报, 2014, 33(4): 794-802. doi: 10.11654/jaes.2014.04.026 [43] 彭强, 关傲梅, 齐维晓, 等. 基于同位素示踪和分子生物学技术对潮白河沉积物中氮还原功能特征的研究[J]. 环境科学学报, 2021, 41(11): 4615-4624. doi: 10.13671/j.hjkxxb.2021.0193 [44] 沈李东. 湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D]. 杭州: 浙江大学, 2014. [45] 张亚迪, 宋永会, 彭剑峰, 等. 浑河底泥反硝化厌氧甲烷氧化菌群落多样性的时空分布特征及其与环境因子关系分析[J]. 环境科学, 2018, 39(8): 3670-3676. doi: 10.13227/j.hjkx.201710162 [46] 袁梦冬, 朱静, 吴伟祥. 微生物厌氧甲烷氧化反硝化研究进展[J]. 微生物学报, 2014, 54(2): 129-138. doi: 10.13343/j.cnki.wsxb.2014.02.002 [47] SHEN L D, HU B L, LIU S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology & Biotechnology, 2016, 100(16): 7171-7180. [48] XU Y, TONG T, CHEN J, et al. Nitrite-dependent methane-oxidizing bacteria seasonally and spatially shift in a constructed wetland used for treating river water[J]. Ecological Engineering, 2018, 110: 48-53. doi: 10.1016/j.ecoleng.2017.10.005 [49] LOU J, LV J, YANG D Y. Effects of environmental factors on Nitrate-DAMO activity[J]. Water, Air, & Soil Pollution, 2020, 231: 263. doi: 10.1007/s11270-020-04640-9