[1] |
XU G P, WANG X F, CHEN L J. Application of principal component analysis for the estimation of source of heavy metal contamination in sugarcane soil[J]. Applied Mechanics and Materials, 2014, 651-653: 1402-1409. doi: 10.4028/www.scientific.net/AMM.651-653.1402
|
[2] |
朱广伟, 陈英旭. 沉积物中有机质的环境行为研究进展[J]. 湖泊科学, 2001, 13(3): 272-279. doi: 10.3321/j.issn:1003-5427.2001.03.012
|
[3] |
WANG J F, CHEN J G, DING S M, et al. Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: A case study in Hongfeng Reservoir, Southwest China.[J]. Environmental Pollution, 2016, 219: 858-865. doi: 10.1016/j.envpol.2016.08.013
|
[4] |
HARIKA, NARUMANCHI, DISHANT, et al. In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China[C]// 2018 IEEE International Conference on Smart Cloud. 0.
|
[5] |
WANG J, CAI C, LI Y, et al. Denitrifying anaerobic methane oxidation: A previously overlooked methane sink in intertidal zone[J]. Environmental Science & Technology, 2019, 53(1): 203-212.
|
[6] |
SIVAN O, ADLER M, PEARSON A, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane[J]. Limnology and Oceanography, 2011, 56(4): 1536-1544. doi: 10.4319/lo.2011.56.4.1536
|
[7] |
RAGHOEBARSING A A, POL A, VAND P K, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440: 918-921. doi: 10.1038/nature04617
|
[8] |
保琼莉, 黄益宗. 湿地反硝化型甲烷厌氧氧化研究进展[J]. 生态学杂志, 2019, 38(10): 3202-3210. doi: 10.13292/j.1000-4890.201910.004
|
[9] |
吴红宝. 典型河流生态系统碳氮温室气体扩散传输研究[D]. 芜湖: 安徽师范大学, 2017.
|
[10] |
BEAULIEU J J, SHUSTER W D, REBHOLZ J A. Nitrous oxide emissions from a large, impounded river: The Ohio River[J]. Environmental Science & Technology, 2010, 44(19): 7527.
|
[11] |
王瑞飞, 王亚利, 杨清香. 淡水生态系统中反硝化型厌氧甲烷氧化微生物的研究进展[J]. 环境污染与防治, 2018, 40(12): 1443-1448. doi: 10.15985/j.cnki.1001-3865.2018.12.023
|
[12] |
DEUTZMANN J S, STIEF P, BRANDES J, et al. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake[J]. Proceedings of the National Academy of Sciences, 2014, 111(51): 18273-18278. doi: 10.1073/pnas.1411617111
|
[13] |
SHEN L D, ZHU Q, LIU S, et al. Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)[J]. Applied Microbiology & Biotechnology, 2014, 98(11): 5029-5038.
|
[14] |
ETTWIG K F, BUTLER M K, PASLIER D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883
|
[15] |
KOJIMA H, TOKIZAWA R, KOGURE K, et al. Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer[J]. Scientific Reports, 2014, 4: 5728. doi: 10.1038/srep05728
|
[16] |
SHEN L D, LIU S, HUANG Q, et al. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied & Environmental Microbiology, 2014, 80(24): 7611-7619.
|
[17] |
HU B L, SHEN L D, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences, 2014, 111(12): 4495-4500. doi: 10.1073/pnas.1318393111
|
[18] |
YAN P, LI M, WEI G, et al. Molecular fingerprint and dominant environmental factors of nitrite-dependent anaerobic methane-oxidizing bacteria in sediments from the Yellow River Estuary, China[J]. PLOS ONE, 2015, 10(9): e0137996. doi: 10.1371/journal.pone.0137996
|
[19] |
SHEN L D, LIY S, ZHU Q, et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 2014, 67(2): 341-349. doi: 10.1007/s00248-013-0330-0
|
[20] |
GUILLAUME B, DIDIER J, CORINNE B P, et al. Production and consumption of methane in freshwater lake ecosystems.[J]. Research in Microbiology, 2011, 162(9): 832-847. doi: 10.1016/j.resmic.2011.06.004
|
[21] |
SONG G D, LIU S M, KUYPERS M M M, et al. Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist[J]. Limnology and Oceanography:Methods, 2016, 1(9): 63-73.
|
[22] |
TRIMMER M,NICHOLLS J C,DEFLANDRE B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J]. Applied and Environmental Microbiology, 2003, 69(11): 6447-6454.
|
[23] |
KUYPERS M M M, SLIEKERS A O, LAVIK G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(10): 608-611.
|
[24] |
RISGAARD-PETERSEN N, NIELSEN L P, RYSGAARD S, et al. Application of the isotope pairing technique in sediments where anammox and denitrification coexist[J]. Limnology and Oceanography:Methods, 2003, 1(1): 63-73. doi: 10.4319/lom.2003.1.63
|
[25] |
CAO W Z, YANG J X, LI Y. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China[J]. Marine Pollution Bulletin, 2016, MPB-07832: 1-7.
|
[26] |
GUPTA V, SMEMO K A, YAVITT J B, et al. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type[J]. Environmental Science & Technology, 2013, 47(15): 8273-8279.
|
[27] |
WEISS R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep-Sea Research and Oceanographic Abstracts, 1970, 17(4): 721-735. doi: 10.1016/0011-7471(70)90037-9
|
[28] |
WANNINKHOF R. Relationship between gas exchange and wind speed over the ocean[J]. Journal of Geophysical Research:Oceans, 1992, 97(C5): 7373-7382. doi: 10.1029/92JC00188
|
[29] |
陈能汪, 吴杰忠, 洪华生. 九龙江河口区夏季反硝化作用初探[J]. 环境科学, 2011, 32(11): 3229-3234. doi: 10.13227/j.hjkx.2011.11.027
|
[30] |
施瑶. 氮输入对泥炭沼泽碳氮转化的影响研究[D]. 长春: 东北师范大学, 2019.
|
[31] |
蒋艾青. 残饵、死鱼及排泄物腐解对山区精养池养殖水质的影响[J]. 现代农业科技, 2007(10): 143-144. doi: 10.3969/j.issn.1007-5739.2007.10.101
|
[32] |
孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015(1): 95-100.
|
[33] |
刘富龙. 氨氮浓度对硝化反应影响的研究[D]. 太原: 太原理工大学, 2009.
|
[34] |
徐志伟, 张心昱, 于贵瑞, 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014, 35(8): 3231-3238. doi: 10.13227/j.hjkx.2014.08.056
|
[35] |
王超, 单保庆, 赵钰. 滏阳河水系沉积物硝化速率分布及溶解氧的限制效应[J]. 环境科学学报, 2015, 35(6): 1735-1740. doi: 10.13671/j.hjkxxb.2014.0897
|
[36] |
赵锋, 许海, 詹旭, 等. 太湖春夏两季反硝化与厌氧氨氧化速率的空间差异及其影响因素[J]. 环境科学, 2021, 42(5): 2296-2302. doi: 10.13227/j.hjkx.202008303
|
[37] |
俞琳, 王东启, 邓焕广, 等. 上海市苏州河与崇明岛河流沉积物反硝化速率及其影响因素[J]. 生态与农村环境学报, 2015, 31(1): 100-105. doi: 10.11934/j.issn.1673-4831.2015.01.015
|
[38] |
王子聪, 许海, 詹旭, 等. 天目湖流域沟塘湿地脱氮速率的时空差异[J]. 环境科学研究, 2022, 35(4): 979-988. doi: 10.13198/j.issn.1001-6929.2022.02.01
|
[39] |
王正文, 姚晓龙, 姜星宇, 等. 季节与水文影响下鄱阳湖碟形湖湿地沉积物氮去除功能变化[J]. 长江流域资源与环境, 2022, 31(3): 673-684.
|
[40] |
王静, 刘洪杰, 雷禹, 等. 三峡库区小江支流沉积物硝化反硝化速率在蓄水期和泄水期的特征[J]. 环境科学, 2017, 38(3): 946-953. doi: 10.13227/j.hjkx.201606202
|
[41] |
秦红益. 太湖沉积物厌氧氨氧化细菌分布多样性及其活性研究[D]. 南京: 南京师范大学, 2017.
|
[42] |
赵永强, 夏永秋, 李博伦, 等. 利用膜进样质谱同时测定河流沉积物反硝化和厌氧氨氧化[J]. 农业环境科学学报, 2014, 33(4): 794-802. doi: 10.11654/jaes.2014.04.026
|
[43] |
彭强, 关傲梅, 齐维晓, 等. 基于同位素示踪和分子生物学技术对潮白河沉积物中氮还原功能特征的研究[J]. 环境科学学报, 2021, 41(11): 4615-4624. doi: 10.13671/j.hjkxxb.2021.0193
|
[44] |
沈李东. 湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D]. 杭州: 浙江大学, 2014.
|
[45] |
张亚迪, 宋永会, 彭剑峰, 等. 浑河底泥反硝化厌氧甲烷氧化菌群落多样性的时空分布特征及其与环境因子关系分析[J]. 环境科学, 2018, 39(8): 3670-3676. doi: 10.13227/j.hjkx.201710162
|
[46] |
袁梦冬, 朱静, 吴伟祥. 微生物厌氧甲烷氧化反硝化研究进展[J]. 微生物学报, 2014, 54(2): 129-138. doi: 10.13343/j.cnki.wsxb.2014.02.002
|
[47] |
SHEN L D, HU B L, LIU S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology & Biotechnology, 2016, 100(16): 7171-7180.
|
[48] |
XU Y, TONG T, CHEN J, et al. Nitrite-dependent methane-oxidizing bacteria seasonally and spatially shift in a constructed wetland used for treating river water[J]. Ecological Engineering, 2018, 110: 48-53. doi: 10.1016/j.ecoleng.2017.10.005
|
[49] |
LOU J, LV J, YANG D Y. Effects of environmental factors on Nitrate-DAMO activity[J]. Water, Air, & Soil Pollution, 2020, 231: 263. doi: 10.1007/s11270-020-04640-9
|