-
煤炭作为我国主要能源之一,其燃烧会产生大量颗粒污染物。目前,针对大气中的悬浮颗粒物,我国已采取了多种解决方案[1]。可吸入颗粒物 (PM10) 在污染环境的同时,会影响交通安全[2-3]、人群健康[4-6]。因此,如何有效控制颗粒物排放是当前大气污染治理的重点。目前,工业上主要采用电除尘器来减少颗粒物的排放,但其去除PM2.5能力不足[7-8]。因此,为提高PM2.5的脱除效率,采用电凝并的方法对颗粒物先进行预处理[9],使细颗粒物通过碰撞凝并以增大其粒径,易于被后端电除尘器脱除。
含尘气流通过电晕极中的高压电场时,粉尘颗粒荷电的过程称为粒子荷电。电凝并技术的关键在于提高颗粒的荷电量,使带电粒子以电泳方式达到较大颗粒物的表面,这样便能提高颗粒间的有效碰撞[10],从而促进凝并。WATANABE等[11]、向晓东等[12]的研究表明,加装了预荷电区和凝并区可有效提高电除尘器的效率,而且预荷电技术在钢铁、水泥、锅炉等多个领域均有应用[13]。预荷电效果受多种因素影响,如电极配置、电压、流场风速、颗粒浓度等[14]。王连泽等[15]将含尘气体通过异极性放电电场,随后将其混合进行凝并后发现,施加到电场中正电压和负电压的相互配合对颗粒物的凝并效果影响更大。JI等[16]在直流和交流电场中的粒子充电和团聚的实验中,发现对于给定的电晕电压,在所有大小的颗粒中,负电晕都比正电晕产生更高的电荷,颗粒电荷取决于颗粒质量载荷,质量负荷越大,颗粒的电荷数越低。何剑等[17]提出了一体式双极荷电凝并方法及装置,其颗粒捕集效率有了明显提高。颗粒物的凝并效率与正电晕通道的电场强度成正比,但与负电晕通道的电场强度关系不大。CHANG等[18]对颗粒预荷电特性进行研究,在探讨放电电压对颗粒荷电量的影响时发现正电晕放电时粉尘颗粒的带电量远远大于负电晕的带电量,但使用负电晕放电时则更加稳定。SOBCZYK等[19]对包含有单极静电凝并器的静电除尘器进行了研究,该系统相比单级静电除尘器对PM10的收集效率更高。李雪娥[20]研究双极电袋复合除尘时发现,在相同条件下,双极电袋复合除尘器的伏安特性和除尘效率都高于单级电袋复合除尘器。张江石等[21]对一个电凝并装置安装了双极芒刺预荷电装置后,发现对细微粉尘的凝并效率可提高10%以上。ZHANG等[22]表示通过对电极的优化可以提高离子密度进而加强小颗粒的荷电效果,而通过提高电压增大电场强度可以促进大颗粒的荷电,可见对于不同大小的颗粒影响荷电的因素不同,故应当根据粒径选择不同的参数调整方法。YANG等[23]对电场中粒子荷电过程进行了数值模拟,发现颗粒浓度的变化对电场影响很大,若大到一定程度,电场会被悬浮颗粒上的电荷产生的二次电场严重扭曲,甚至使得下游放电极上所产生的的电晕电流彻底消失,这会使电除尘器的效率大大下降。WANG等[24]同样发现随着PM0.1质量浓度从0增至100.0 mg·m−3,除尘器内离子浓度会下降两个数量级以上,使得颗粒的荷电、传输性能急剧恶化,而加装预荷电器后,该问题得到明显改善。HU等[25]采用多物理耦合验证的数值方法研究了PM2.5在线-板式电除尘器中的荷电和迁移行为和实验参数对除尘效率的影响,结果表明当风速为1.0 m·s−1、电压为50.0 kV时,对2.0 μm的颗粒收集效率达到了100%。以上研究结果表明,预荷电条件的改变会对颗粒物电凝并效果产生很大影响。
然而有关多种因素共同作用下的影响研究仍较为缺乏。本课题组拟探究对预荷电中放电极种类、放电极性、电压值、粉尘浓度、烟道风速5个主要因素对电凝并效果的影响。选取2种典型的放电极:四齿芒刺线和鱼骨线。这2种电极各有优劣:四齿芒刺线尖端密集,电晕电流密度大,利于粉尘荷电,但其正对极板处存在较大范围电流密度盲区;而鱼骨线由于结构简单,产生的盲区没有四齿芒刺线大,但其电流密度小,仅适合处理较小比电阻粉尘[26-27]。基于此,本研究选择这2种电极作为预荷电的放电极,探索其在不同荷电参数下的凝并效果。设计多因素实验研究,通过正交设计从全面实验中选出部分典型性的实验点[28-29],对因素水平进行简化、择优处理,在此基础上进行正交实验,分析结果以得到最佳实验参数组合,以期得到相关因素对电凝并效果的影响,为电除尘技术的应用提供参考。
预荷电中放电极对交流电场下颗粒物凝并效果的影响
Influence of discharge electrodes in precharging on particle agglomeration effect under AC electric field
-
摘要: 为探索在电凝并过程中,不同预荷电条件对颗粒物凝并效果的影响,选择出最优参数组合,对包含预荷电区和凝并区的实验系统进行了研究。对所选择的鱼骨线和四齿芒刺线2种放电极的伏安特性进行了测量,然后对2种电极分别在正电晕、负电晕荷电条件下,不同电压、粉尘浓度、风速下对粉尘凝并效果的影响进行实验,在此基础上进行正交实验,得出最优水平组合。结果表明,正电晕放电时2种放电极的伏安特性区别很小,负电晕放电鱼骨线电流较大,且负电晕的电流均大于正电晕。单因素实验结果表明,负电晕荷电的凝并效果优于正电晕荷电,四齿芒刺线的凝并效果优于鱼骨线,因此对四齿芒刺线在负电晕荷电的条件下,分别选定电压、粉尘浓度、风速的3个水平进行正交实验,得出凝并效果最佳的因素水平组合为电压35 kV、粉尘质量浓度2.0 g·m−3、风速1.4 m·s−1。本研究提供了一种探究多因素多水平对电凝并效果影响的思路,为颗粒物去除应用中预荷电参数选取提供了参考。Abstract: To explore the effect of different pre-charging conditions on the agglomeration effect of particulate matter in the electric agglomeration process and to select the optimal parameters, an experimental system containing a pre-charging zone and an agglomeration zone was investigated. The V-I characteristics of the discharge electrodes-a fishbone wire and a four-tooth barb wire were measured. Then experiments of the two electrodes under positive corona and negative corona discharge conditions with different voltages, dust concentrations, and airflow velocities were conducted, based on which orthogonal experiments were conducted to derive the best level of each factor. The results showed that the difference between the V-I characteristics of the two electrodes in positive corona discharge was very small. The current of the fishbone wire was larger than that of the four-tooth barb wire in the negative corona discharge. The current of negative corona discharge was larger than that of positive corona discharge. The results of single-factor experiments showed that the agglomeration effect of negative corona discharge was better than that of positive corona discharge, and the agglomeration effect of the four-tooth barb wire was better than that of the fishbone wire. Therefore, three levels of voltage, dust concentration, and airflow velocity were selected for orthogonal experiments with the four-tooth barb wire and negative corona discharge, and the best levels were 35 kV, 2.0 g·m−3, and 1.4 m·s−1 respectively. An idea was proposed for the electric agglomeration experimental research with multi-factor and multi-level, which provided a reference for the selection of pre-charging parameters in practical applications and had certain guiding significance for the removal of particulate matter.
-
表 1 因素水平表
Table 1. Factor-level table
水平 A
电压/kVB
浓度/( g·m−3)C
风速/( m·s−1)1 35.0 1.0 1.2 2 30.0 2.0 1.4 3 25.0 3.0 1.0 表 2 实验分配与结果
Table 2. Test allocation and results
实验号 A
1B
2C
3空列
4∆ν最小值/% 1 1 1 1 1 −1.46 2 1 2 2 2 −1.57 3 1 3 3 3 −1.53 4 2 1 2 3 −1.41 5 2 2 3 1 −1.48 6 2 3 1 2 −1.39 7 3 1 3 2 −1.15 8 3 2 1 3 −1.28 9 3 3 2 1 −1.23 表 3 极差结果
Table 3. Range results
实验号 A
1B
2C
3空列
4测试结果 K1 −4.56 −4.02 −4.13 −4.17 T=−12.50
P=17.36
Q=173.77K2 −4.28 −4.33 −4.21 −4.11 K3 −3.66 −4.15 −4.16 −4.22 极差R 0.90 0.13 0.03 0.05 表 4 方差分析表
Table 4. Analysis of variance table
因素与项目 SS df MS F 显著性 A电压 0.141 5 2 0.070 7 88.375 ** B风速 0.016 3 2 0.008 2 10.250 * C浓度 0.001 2 2 0.000 6 误差e 0.002 1 2 0.001 1 总和 0.161 1 8 注:显著性“**”表示非常显著,“*”表示显著,空表示不显著;SS的误差eΔ为0.003 3,df的误差eΔ为4。 -
[1] 张丹. 我国城市大气污染现状及防治对策[J]. 中国资源综合利用, 2019, 37(12): 156-158. doi: 10.3969/j.issn.1008-9500.2019.12.046 [2] 张楠. 浅谈雾霾的危害及防治[J]. 能源与节能, 2020(2): 71-72. doi: 10.3969/j.issn.2095-0802.2020.02.030 [3] 刘志强, 王玲, 张爱红, 等. 基于贝叶斯模型的雾霾天高速公路交通事故发生机理研究[J]. 重庆理工大学学报(自然科学), 2018, 32(1): 43-49. [4] 邢黎明, 贾继霞, 张艳红. 大气可吸入颗粒物对环境和人体健康的危害[J]. 安阳工学院学报, 2009(4): 48-50. doi: 10.3969/j.issn.1673-2928.2009.04.016 [5] 李丽珍, 曹露, 王磊, 等. 谈中国PM2.5的污染来源及危害[J]. 能源与节能, 2013(4): 77-78. doi: 10.3969/j.issn.2095-0802.2013.04.034 [6] MATHILDE P, FALQ G, WAGNER V, et al. Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities[J]. Atmospheric Environment, 2014, 95: 175-184. doi: 10.1016/j.atmosenv.2014.06.030 [7] JAWOREK A, KRUPA A, CZECH T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155. doi: 10.1016/j.elstat.2006.07.012 [8] 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640. doi: 10.13334/j.0258-8013.pcsee.190489 [9] 石零, 陈红梅, 杨成武. 微细粉尘治理技术的研究进展[J]. 江汉大学学报(自然科学版), 2013, 41(2): 40-46. [10] 王雪, 吕韩雷, 朱廷钰, 等. 细颗粒物电凝并技术研究进展[J]. 煤化工, 2016, 44(3): 51-54. doi: 10.3969/j.issn.1005-9598.2016.03.014 [11] WATANABE T, TOCHIKUBO F, KOIZURNI Y, et al. Submicron particle agglomeration by an electrostatic agglomerator[J]. Journal of Electrostatics, 1995, 34(4): 367-383. doi: 10.1016/0304-3886(95)93833-5 [12] 向晓东, 陈旺生, 幸福堂, 等. 交变电场中电凝并收尘理论与实验研究[J]. 环境科学学报, 2000, 20(2): 61-65. doi: 10.13671/j.hjkxxb.2000.02.012 [13] 向轶, 孟刚, 宋波等. 预荷电强化烟气除尘技术的研究进展及应用现状[J]. 现代化工, 2022, 42(11): 82-86. doi: 10.16606/j.cnki.issn0253-4320.2022.11.016 [14] JAWOREK A, MARCHEWICZ A, SOBCZYK A T, et al. Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission[J]. Progress in Energy and Combustion Science, 2018, 67(4): 206-233. [15] 王连泽, 贺美陆, 孟亚力. 双极荷电粉尘颗粒凝聚的初步研究[J]. 环境工程, 2002, 20(3): 31-33. doi: 10.3969/j.issn.1000-8942.2002.03.010 [16] JI J H, HWANG J, BAE G N, et al. Particle charging and agglomeration in DC and AC electric fields[J]. Journal of Electrostatics, 2004, 61(1): 57-68. doi: 10.1016/j.elstat.2003.12.003 [17] 何剑, 刘道清, 徐国胜. 一体式双极荷电凝并器试验研究[J]. 中国电机工程学报, 2013, 33(17): 45-50. [18] CHANG Q Y, ZHENG C H, YANG Z D, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification[J]. Fuel, 2017, 200: 134-145. doi: 10.1016/j.fuel.2017.03.033 [19] SOBCZYK A T, MARCHEWICZ A, KRUPA A, et al. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187: 91-101. doi: 10.1016/j.seppur.2017.06.039 [20] 李雪娥. 双极电袋复合除尘器的双极荷电机理与增效特性研究[D]. 武汉: 武汉科技大学, 2019 [21] 张江石, 周和军. 双区式电凝并技术对提高细微粉尘凝并效率的影响[J]. 环境工程学报, 2020, 14(5): 1304-1310. doi: 10.12030/j.cjee.201907074 [22] ZHANG H, SHAO L Y, GAO W C, et al. Particle charging in electric field under simulated SO3-containing flue gas at low temperature[J]. Fuel, 2022, 310: 122291. doi: 10.1016/j.fuel.2021.122291 [23] YANG D, Guo B Y, YE X L, et al. Numerical simulation of electrostatic precipitator considering the dust particle space charge[J]. Powder Technology, 2019, 354: 552-560. doi: 10.1016/j.powtec.2019.06.013 [24] WANG Y F, GAO W C, ZHANG H, et al. Enhanced particle precipitation from flue gas containing ultrafine particles through precharging[J]. Process Safety and Environmental Protection, 2020, 144: 111-122. doi: 10.1016/j.psep.2020.07.005 [25] HU J, WEN J P, LI H, et al. Experiment and numerical simulation on the fine particle migration behaviors for the collection efficiency enhancement of a wire-plate electrostatic precipitator in pig house[J]. Computers and Electronics in Agriculture, 2022, 199: 107145. doi: 10.1016/j.compag.2022.107145 [26] 王新, 刘赫, 肖立春, 等. 气化炉粉尘在电除尘器中的凝并性能//中国环境科学学会环境工程分会[J]. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 工业建筑杂志社有限公司, 2021: 6. doi: 10.26914/c.cnkihy.2021.021916 [27] 党小庆, 杨春方, 王迪, 等. 电除尘器收尘极板表面电流密度分布实验研究[J]. 重型机械, 2005(2): 32-35. [28] LI W, DAI S L, WANG H Q, et al. Numerical study on the performance of swirl tube based on orthogonal design[J]. Advanced Powder Technology, 2022, 33(8): 103620. doi: 10.1016/j.apt.2022.103620 [29] LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446. doi: 10.1016/j.est.2021.102446 [30] 刘含笑, 刘美玲, 刘毅, 等. 燃煤飞灰几何粒径分布测试方法及其分布特征[J]. 冶金能源, 2020, 39(2): 52-54. [31] 刘全, 白志民, 王东, 等. 我国粉煤灰化学成分与理化性能及其应用分析[J]. 中国非金属矿工业导刊, 2021(1): 1-9. [32] 刘含笑, 罗水源, 刘毅, 等. 燃煤电厂飞灰试验室比电阻测试方法及其分布特征[J]. 锅炉技术, 2022, 53(5): 69-74. [33] HUANG C, MA X Q, SUN Y S, et al. Particle agglomeration in bipolar barb agglomerator under AC electric field[J]. Plasma Science and Technology, 2015, 17(4): 317-320. doi: 10.1088/1009-0630/17/4/10 [34] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. [35] 许德玄. 静电除尘预荷电的研究[J]. 环境工程, 1997, 15(6): 25-28. [36] WHITE H J. Particle charging in electrostatic precipitation[J]. Transactions of the American Institute of Electrical Engineers, 1951, 70(2): 1186-1191. doi: 10.1109/T-AIEE.1951.5060545 [37] O'HARA D B, CLEMENTS J S, FINNEY W C, et al. Aerosol particle charging by free electrons[J]. Journal of Aerosol Science, 1989, 20(3): 313-330. doi: 10.1016/0021-8502(89)90007-4 [38] 李庆, 熊焱青, 李娇娇, 等. 四种芒刺极线负高压电晕放电实验[J]. 科学技术与工程, 2014, 14(15): 134-137. doi: 10.3969/j.issn.1671-1815.2014.15.026