[1] |
张丹. 我国城市大气污染现状及防治对策[J]. 中国资源综合利用, 2019, 37(12): 156-158. doi: 10.3969/j.issn.1008-9500.2019.12.046
|
[2] |
张楠. 浅谈雾霾的危害及防治[J]. 能源与节能, 2020(2): 71-72. doi: 10.3969/j.issn.2095-0802.2020.02.030
|
[3] |
刘志强, 王玲, 张爱红, 等. 基于贝叶斯模型的雾霾天高速公路交通事故发生机理研究[J]. 重庆理工大学学报(自然科学), 2018, 32(1): 43-49.
|
[4] |
邢黎明, 贾继霞, 张艳红. 大气可吸入颗粒物对环境和人体健康的危害[J]. 安阳工学院学报, 2009(4): 48-50. doi: 10.3969/j.issn.1673-2928.2009.04.016
|
[5] |
李丽珍, 曹露, 王磊, 等. 谈中国PM2.5的污染来源及危害[J]. 能源与节能, 2013(4): 77-78. doi: 10.3969/j.issn.2095-0802.2013.04.034
|
[6] |
MATHILDE P, FALQ G, WAGNER V, et al. Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities[J]. Atmospheric Environment, 2014, 95: 175-184. doi: 10.1016/j.atmosenv.2014.06.030
|
[7] |
JAWOREK A, KRUPA A, CZECH T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155. doi: 10.1016/j.elstat.2006.07.012
|
[8] |
徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640. doi: 10.13334/j.0258-8013.pcsee.190489
|
[9] |
石零, 陈红梅, 杨成武. 微细粉尘治理技术的研究进展[J]. 江汉大学学报(自然科学版), 2013, 41(2): 40-46.
|
[10] |
王雪, 吕韩雷, 朱廷钰, 等. 细颗粒物电凝并技术研究进展[J]. 煤化工, 2016, 44(3): 51-54. doi: 10.3969/j.issn.1005-9598.2016.03.014
|
[11] |
WATANABE T, TOCHIKUBO F, KOIZURNI Y, et al. Submicron particle agglomeration by an electrostatic agglomerator[J]. Journal of Electrostatics, 1995, 34(4): 367-383. doi: 10.1016/0304-3886(95)93833-5
|
[12] |
向晓东, 陈旺生, 幸福堂, 等. 交变电场中电凝并收尘理论与实验研究[J]. 环境科学学报, 2000, 20(2): 61-65. doi: 10.13671/j.hjkxxb.2000.02.012
|
[13] |
向轶, 孟刚, 宋波等. 预荷电强化烟气除尘技术的研究进展及应用现状[J]. 现代化工, 2022, 42(11): 82-86. doi: 10.16606/j.cnki.issn0253-4320.2022.11.016
|
[14] |
JAWOREK A, MARCHEWICZ A, SOBCZYK A T, et al. Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission[J]. Progress in Energy and Combustion Science, 2018, 67(4): 206-233.
|
[15] |
王连泽, 贺美陆, 孟亚力. 双极荷电粉尘颗粒凝聚的初步研究[J]. 环境工程, 2002, 20(3): 31-33. doi: 10.3969/j.issn.1000-8942.2002.03.010
|
[16] |
JI J H, HWANG J, BAE G N, et al. Particle charging and agglomeration in DC and AC electric fields[J]. Journal of Electrostatics, 2004, 61(1): 57-68. doi: 10.1016/j.elstat.2003.12.003
|
[17] |
何剑, 刘道清, 徐国胜. 一体式双极荷电凝并器试验研究[J]. 中国电机工程学报, 2013, 33(17): 45-50.
|
[18] |
CHANG Q Y, ZHENG C H, YANG Z D, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification[J]. Fuel, 2017, 200: 134-145. doi: 10.1016/j.fuel.2017.03.033
|
[19] |
SOBCZYK A T, MARCHEWICZ A, KRUPA A, et al. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187: 91-101. doi: 10.1016/j.seppur.2017.06.039
|
[20] |
李雪娥. 双极电袋复合除尘器的双极荷电机理与增效特性研究[D]. 武汉: 武汉科技大学, 2019
|
[21] |
张江石, 周和军. 双区式电凝并技术对提高细微粉尘凝并效率的影响[J]. 环境工程学报, 2020, 14(5): 1304-1310. doi: 10.12030/j.cjee.201907074
|
[22] |
ZHANG H, SHAO L Y, GAO W C, et al. Particle charging in electric field under simulated SO3-containing flue gas at low temperature[J]. Fuel, 2022, 310: 122291. doi: 10.1016/j.fuel.2021.122291
|
[23] |
YANG D, Guo B Y, YE X L, et al. Numerical simulation of electrostatic precipitator considering the dust particle space charge[J]. Powder Technology, 2019, 354: 552-560. doi: 10.1016/j.powtec.2019.06.013
|
[24] |
WANG Y F, GAO W C, ZHANG H, et al. Enhanced particle precipitation from flue gas containing ultrafine particles through precharging[J]. Process Safety and Environmental Protection, 2020, 144: 111-122. doi: 10.1016/j.psep.2020.07.005
|
[25] |
HU J, WEN J P, LI H, et al. Experiment and numerical simulation on the fine particle migration behaviors for the collection efficiency enhancement of a wire-plate electrostatic precipitator in pig house[J]. Computers and Electronics in Agriculture, 2022, 199: 107145. doi: 10.1016/j.compag.2022.107145
|
[26] |
王新, 刘赫, 肖立春, 等. 气化炉粉尘在电除尘器中的凝并性能//中国环境科学学会环境工程分会[J]. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 工业建筑杂志社有限公司, 2021: 6. doi: 10.26914/c.cnkihy.2021.021916
|
[27] |
党小庆, 杨春方, 王迪, 等. 电除尘器收尘极板表面电流密度分布实验研究[J]. 重型机械, 2005(2): 32-35.
|
[28] |
LI W, DAI S L, WANG H Q, et al. Numerical study on the performance of swirl tube based on orthogonal design[J]. Advanced Powder Technology, 2022, 33(8): 103620. doi: 10.1016/j.apt.2022.103620
|
[29] |
LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446. doi: 10.1016/j.est.2021.102446
|
[30] |
刘含笑, 刘美玲, 刘毅, 等. 燃煤飞灰几何粒径分布测试方法及其分布特征[J]. 冶金能源, 2020, 39(2): 52-54.
|
[31] |
刘全, 白志民, 王东, 等. 我国粉煤灰化学成分与理化性能及其应用分析[J]. 中国非金属矿工业导刊, 2021(1): 1-9.
|
[32] |
刘含笑, 罗水源, 刘毅, 等. 燃煤电厂飞灰试验室比电阻测试方法及其分布特征[J]. 锅炉技术, 2022, 53(5): 69-74.
|
[33] |
HUANG C, MA X Q, SUN Y S, et al. Particle agglomeration in bipolar barb agglomerator under AC electric field[J]. Plasma Science and Technology, 2015, 17(4): 317-320. doi: 10.1088/1009-0630/17/4/10
|
[34] |
李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005.
|
[35] |
许德玄. 静电除尘预荷电的研究[J]. 环境工程, 1997, 15(6): 25-28.
|
[36] |
WHITE H J. Particle charging in electrostatic precipitation[J]. Transactions of the American Institute of Electrical Engineers, 1951, 70(2): 1186-1191. doi: 10.1109/T-AIEE.1951.5060545
|
[37] |
O'HARA D B, CLEMENTS J S, FINNEY W C, et al. Aerosol particle charging by free electrons[J]. Journal of Aerosol Science, 1989, 20(3): 313-330. doi: 10.1016/0021-8502(89)90007-4
|
[38] |
李庆, 熊焱青, 李娇娇, 等. 四种芒刺极线负高压电晕放电实验[J]. 科学技术与工程, 2014, 14(15): 134-137. doi: 10.3969/j.issn.1671-1815.2014.15.026
|