-
工业锅炉烟气排入大气后,其中的NOx会造成酸雨、光化学烟雾和臭氧层空洞等环境问题,还会引起呼吸系统疾病[1-2]。NH3的选择性催化还原(selective catalytic reduction, SCR)工艺具有脱硝效率高、无二次污染和SO2中毒敏感性低等优点,广泛用于削减工业锅炉NOx排放[3-4]。V2O5-WO3/TiO2是常用中温SCR催化剂。已有学者实验测量了钒基催化剂脱硝反应的活化能和指前因子等参数[5-6],并在此基础上进行大量数值模拟。 TRONCONI等[7]通过瞬态响应技术研究了钒基催化剂吸附和解析NH3的动力学,并根据实验参数建立SCR蜂窝脱硝数学模型来模拟工业SCR反应器的瞬态行为。该模型考虑了蜂窝催化剂内反应物横向扩散和通道轴向浓度不均匀等因素的影响,预测结果与实验值拟合良好。DHANUSHKODI等[8]将催化剂层视为多孔介质,建立了圆孔蜂窝催化剂SCR脱硝的二维模型,并用它预测了不同温度和氨浓度下的脱硝性能。RODUIT等[9]建立了稳态SCR蜂窝脱硝过程的三维数学模型,研究了蜂窝通道形状、氨氮比和反应物浓度等对脱硝效率的影响。
上述模型没有求解蜂窝通道内烟气流场,催化剂表面对流传质速率依赖于经验关联式。将计算流体动力学(computational fluid dynamics, CFD)方法与催化脱硝数学模型相结合,可提高脱硝过程模拟精度。LEI等[10]假设脱硝反应发生在催化剂层表面,利用商业CFD软件ANSYS Fluent的表面反应模型模拟SCR蜂窝脱硝过程。YAO等[11]将催化剂层视为多孔介质,建立了基于容积反应的SCR蜂窝脱硝CFD模型。为充分考虑多孔催化剂内部组分扩散,可根据实验修正脱硝反应速率。赵大周等[12]考虑内、外扩散以及副反应等因素,建立了SCR催化脱硝的三维模型,研究了工作参数和催化剂层厚度对脱硝效率和SO2转化率的影响。王盛等[13]提出采用扩缩通道来提高SCR蜂窝脱硝性能,并建立了扩缩通道蜂窝SCR反应器的Fluent模型。为减少CFD计算工作量,学者通常提取蜂窝反应器单元结构,建立单元模型。
蓄热式高温空气燃烧技术能通过烟气余热回收有效提高炉窑能源效率,同时促进低热值燃料燃烧利用[14]。这种技术常采用比表面积大、流动阻力小的蜂窝蓄热体来进行烟气-空气换热,学者对其进行了大量的实验和数值模拟研究,以期优化蜂窝蓄热体结构和工艺参数[15-17]。本课题组对蜂窝蓄热体进行了较系统的研究,包括建立了蓄热体复杂非稳态传热CFD模型,提出了新型扩缩通道蜂窝蓄热体,研究了蓄热体结构和工艺参数的影响等[18-20]。鉴于蜂窝蓄热体与SCR反应器结构相容,课题组提出蜂窝蓄热体表面涂覆钒基催化剂的传热-脱硝一体化技术,数值模拟表明该复合蓄热体能实现余热回收和烟气脱硝双重功效。不过,钒基催化剂在烟气出口侧的低温区脱硝效果不太理想[21]。近期,任兆勇等[22]采用廉价原料制备了以新型Popcarbon纳米多孔结构为载体的SCR催化剂5%CuO-40%HPW/Popcarbon,该催化剂在250 ℃以下的低温区有较理想的脱硝性能。
本研究拟通过在现有涂覆单一中温催化剂V2O5-WO3/TiO2的复合蜂窝蓄热体低温侧表面涂覆5%CuO-40%HPW/Popcarbon低温催化剂,同时借助扩缩通道强化传热传质来提高SCR蜂窝蓄热体传热和脱硝性能,在对Fluent软件二次开发的基础上,建立基于多孔介质的SCR蜂窝脱硝与烟气-空气切换的蓄热体非稳态传热相耦合的复合蜂窝蓄热体数值模型,并开展数值模拟,以期探明催化剂涂覆方案和结构参数对复合蓄热体传热和脱硝性能的影响规律,并为蜂窝蓄热与SCR脱硝一体化提供参考。
组合涂覆SCR催化剂的扩缩通道蓄热体传热脱硝性能的数值模拟
A numerical simulation of on heat transfer and denitrification performances for regenerators with expansion and contraction channels coated by SCR catalysts
-
摘要: 蜂窝蓄热体表面涂覆中温钒基SCR催化剂(V2O5-WO3/TiO2),可实现余热回收和烟气脱硝双重功效,但钒基催化剂在烟气出口侧的低温区脱硝效果不理想。新型纳米多孔结构的铜基SCR催化剂(5%CuO-40%HPW/Popcarbon)能在低温条件下高效工作。通过在现有钒基SCR蜂窝蓄热体低温侧表面涂覆这种铜基催化剂,并借助扩缩通道强化传热传质进一步提高复合蓄热体传热和脱硝性能。在对Fluent软件二次开发基础上,采用多孔介质方法描述催化层烟气SCR脱硝,建立烟气-空气切换条件下复合SCR蜂窝蓄热体内非稳态传热脱硝的数值模型。借助该模型,探究催化剂涂覆方案和结构参数对复合蓄热体传热和脱硝性能的影响。结果表明:扩缩角为15°的组合涂覆型SCR蓄热体具有良好整体性能,其能量回收率(ERR)和脱硝效率(η)分别比涂覆单一钒基催化剂的直通道蜂窝蓄热体提升10.1% (58.2% vs 48.1%)和26.7% (92.4% vs 65.7%)。本研究结果可为工业锅炉的节能和氮氧化物(NOx)减排提供参考。Abstract: The dual effects of waste heat recovery and flue gas denitrification was obtained by coating Vanadium SCR catalysts of medium temperature (V2O5-WO3/TiO2) on honeycomb regenerators, however, the denitrification performance of Vanadium catalysts is unsatisfactory in the low temperature zone approaching flue gas outlet. Novel Copper-based SCR catalysts of nano porous structure (5%CuO-40% HPW/Popcarbon) were reported to work efficiently under the condition of low temperature. In the current work, to obtain better heat transfer and denitrification performances, the novel Copper-based SCR catalysts are applied to the low-temperature surface of honeycomb regenerators coated with Vanadium catalysts, and expansion and contraction channels are employed to strengthen the heat and mass transfer rates in composite regenerators. With the secondary development of Fluent software, the numerical model of novel composite SCR honeycomb regenerators is established, where the SCR denitrification of flue gas in porous catalyst layers is coupled with the unsteady conjugate heat transfer with air and flue gas flowing through regenerators alternately. With the current model, the effects of catalyst coating scheme and structural parameters on the thermal and denitrification performances are explored for the novel composite regenerators. Numerical results show that the composite SCR honeycomb regenerators with an expansion and contraction angle of 15° can generate a good overall performance, whose energy recovery ratio (ERR) and denitrification efficiency (η) are 10.1% (58.2% vs 48.1%) and 26.7% (92.4% vs 65.7%) higher than those of straight-channel regenerators coated with a single Vanadium-based catalyst, respectively. The results of this study can provide a reference for energy saving and reducing nitrogen oxide (NOx) emissions in industrial boilers.
-
表 1 复合蓄热体的结构和工艺参数
Table 1. Structural and technology parameters of composite regenerators
参数 数值/内容 参数 数值 蓄热体长度 600 mm 切换时间 30 s 通道特征尺寸 6 mm 空气进口流速 2.20 m·s−1 骨架壁厚 1 mm 空气进口温度 293 K 扩缩角 0°、5°、10°、15°和20° 烟气进口流速 5 m·s−1 扩缩节距 6 mm 烟气进口温度 673 K 催化层厚度 110 μm 烟气进口O2体积分数 5% 催化剂种类 V2O5−WO3/TiO2 烟气进口NO体积分数 0.05% 5%CuO-40%HPW/Popcarbon 烟气进口NH3体积分数 0.05% 表 2 不同扩缩角条件下组合涂覆型复合蓄热体中温和低温催化剂的涂覆长度
Table 2. Lengths of medium- and low-temperature catalyst layers for composite regenerators with different expansion and contraction angles
扩缩角α/° 中温催化剂层长度L1/mm 低温催化剂层长度L2/mm 0(直通道) 258 342 5 262 338 10 266 334 15 270 330 20 274 326 -
[1] PALASH S M, KALAM M A, MASJUKI H H, et al. Impacts of biodiesel combustion on NOx emissions and their reduction approaches[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 473-490. doi: 10.1016/j.rser.2013.03.003 [2] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. doi: 10.1016/j.coche.2016.09.004 [3] OGIDIAMA O V, SHAMIM T. Performance analysis of industrial selective catalytic reduction (SCR) systems[J]. Energy Procedia, 2014, 61: 2154-2157. doi: 10.1016/j.egypro.2014.12.098 [4] ZHANG W B, CHEN J L. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4 [5] SVACHULA J, FERLAZZO N, FORZATTI P, et al. Selective reduction of nitrogen oxides (NOx) by ammonia over honeycomb selective catalytic reduction catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1053-1060. [6] YANG J, MA H T, YAMAMOTO Y, et al. SCR catalyst coated on low-cost monolith support for flue gas denitrification of industrial furnaces[J]. Chemical Engineering Journal, 2013, 230: 513-521. doi: 10.1016/j.cej.2013.06.114 [7] TRONCONI E, LIETTI L, FORZATTI P, et al. Experimental and theoretical investigation of the dynamics of the SCR-DeNOx reaction[J]. Chemical Engineering Science, 1996, 21(11): 2965-2970. [8] DHANUSHKODI S R, MAHINPEYN, WILSON M, et al. Kinetic and 2D reactor modeling for simulation of the catalytic reduction of NOx in the monolith honeycomb reactor[J]. Process Safety and Environmental Protection, 2008, 86(4): 303-309. doi: 10.1016/j.psep.2008.02.004 [9] RODUIT B, BAIKER A, BETTONI F, et al. 3-D modeling of SCR of NOx by NH3 on vanadia honeycomb catalysts[J]. AIChE J, 1998, 44(12): 2371. [10] LEI Z, LIU X, JIA M. Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst[J]. Energy & Fuels, 2009, 23(6): 6146-6151. [11] YAO J, ZHONG Z, ZHU L. Porous medium model in computational fluid dynamics simulation of a honeycombed SCR DeNOx Catalyst[J]. Chemical Engineering & Technology, 2015, 38(2): 283-290. [12] 赵大周, 何胜, 司风琪, 等. 选择性催化还原单孔催化剂数值模拟[J]. 热力发电, 2016, 45(4): 100-105. doi: 10.3969/j.issn.1002-3364.2016.04.017 [13] 王盛, 游永华, 邵坤, 等. 扩缩通道强化蜂窝型SCR反应器脱硝性能的数值研究[J]. 环境科学学报, 2022, 42(3): 393-399. [14] GUO K H, SHI W H, WU D H, et al. Experiment research and simulation analysis of regenerative oxygen-enriched combustion technology[J]. Industrial Heating, 2015, 66: 221-224. [15] 王维刚. 蓄热式换热器的优化设计[J]. 化工机械, 2010, 37(4): 412-414. doi: 10.3969/j.issn.0254-6094.2010.04.004 [16] RAFIDI N, BLASIAK W. Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners[J]. Applied Thermal Engineering, 2005, 25(17/18): 2966-2982. [17] 封红燕, 冯毅. 新型蜂窝蓄热体热工特性的数值模拟[J]. 机械设计与制造, 2012, 6: 108-110. doi: 10.3969/j.issn.1001-3997.2012.04.040 [18] YOU Y H, HUANG H, SHAO G W, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerators[J]. Applied Thermal Engineering, 2016, 108: 1243-1250. doi: 10.1016/j.applthermaleng.2016.08.035 [19] YOU Y H, Wu Z D, LI B, et al. 3D numerical simulation and optimization of honeycomb regenerators with parallel or crosswise arrangement of circular holes[J]. Chemical Engineering and Processing-Process Intensification, 2019, 137: 22-32. doi: 10.1016/j.cep.2019.01.010 [20] 吴仲达, 游永华, 王盛, 等. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. doi: 10.12034/j.issn.1009-606X.220009 [21] YOU Y H, WU Z D, ZENG W D, et al. CFD modeling of unsteady SCR deNOx coupled with regenerative heat transfer in honeycomb regenerators partly coated by Vanadium catalysts[J]. Chemical Engineering Research and Design, 2019, 150: 234-245. doi: 10.1016/j.cherd.2019.07.015 [22] 任兆勇. 基于新型纳米多孔载体的多金属氧酸盐主客体复合体系的构建及NH3-SCR中低温脱硝性能研究[D]青岛 : 山东大学 , 2019 . [23] 祁海鹰, 李伟, 李宇红, 等. 蜂巢蓄热体的稳态传热特性和最佳换向时间[C]. 全国工业炉暨电热学术会议. 2000, 大连: 366-372. [24] STEPHEN R T. An Introduction to Combustion Concepts and Applications[M]. Beijing: Tsinghua University Press, 2018, [25] VANNICE M A. Kinetics of Catalytic Reactions[M]. 2005, New York: Springer Science & Business Media. [26] 王志鹏, 李鹏飞, 陈媛, 等. SCR脱硝反应活化能和指前因子分析[J]. 环境工程, 2018, 36(10): 86-91. doi: 10.13205/j.hjgc.201810017