-
微纳米曝气作为一种新型曝气技术,具有较高的气液传质效率,可以快速提高水体溶解氧含量[1],调整水体微生物种群结构,增加好氧微生物数量[2-3],改善水环境水质,因而广泛应用于河道黑臭水体治理、城市景观水体治理、湖泊河流生态修复等领域[4-8]。但针对该技术应用于饮用水源地水库及其对沉积物微生物影响的研究相对较少[9-10]。沉积物微生物是湖泊水库生态系统物质循环和能量流动的主要动力,在沉积物-水体的物质循环、能量流动及水华形成过程中发挥着重要作用[10-11]。磷功能菌(包括聚磷菌和解磷菌)作为参与沉积物内源磷代谢循环的主要菌群,与沉积物的各形态磷转化息息相关[12-13]。目前,国内外关于磷功能菌多样性及其群落组成、结构研究多见于强化生物除磷工艺中[14-15]、农田土壤植物促生[16-17]等方面,对于饮用水源地水库沉积物这种特殊生境的研究鲜有报道[13,18-19]。而此方面的研究,特别是结合微纳米曝气工程的实施,开展曝气前后沉积物微生物群落结构动态变化的相关研究,不仅可以为微纳米曝气技术的实施提供参考,而且可以为水库沉积物磷循环的微生物驱动机理研究提供基础数据。
福建省东牙溪水库是三明市区的重要饮用水水源地,肩负着为三明市30万人提供饮水的重任。近些年来,随着三明市的经济发展及城镇化建设的加快,周边环境的改变,使得东牙溪水库面临的一些水体污染问题逐渐显现[20-21]。为了保护饮用水源地,在2017年实施微纳米曝气生态修复工程项目。为探究微纳米曝气工程实施是否对沉积物的微生物及磷代谢功能菌的群落产生影响,本研究采用Illumina高通量测序技术对曝气前后沉积物微生物及磷功能菌的群落组成、结构进行了分析,探究了曝气实施对磷功能菌群落组成和结构的影响,其结果可以补充完善水库沉积物磷功能菌群落组成、结构的相关基础数据,为微纳米曝气技术机理研究以及实际应用提供参考。
微纳米曝气对水库沉积物细菌及磷功能菌群落的影响
Effects of micro-nanometer aeration on bacterial and phosphorus functional bacterial communities in reservoir sediments
-
摘要: 为探究微纳米曝气对水库沉积物细菌及磷功能菌群落的影响,以三明市东牙溪水库为研究对象,通过Illumina高通量测序,分析了曝气前后沉积物细菌、聚磷菌与有机解磷菌的群落组成、结构及其与环境因子的相关性。结果表明,微纳米曝气对底部产生充氧作用,进而对沉积物微生物的群落造成一定影响,微纳米曝气后,变形菌门(Proteobacteria)的相对丰度上升了24.7%,厚壁菌门(Firmicutes)上升了8.3%,而绿弯菌门(Chloroflexi)下降了5.9%,酸杆菌门(Acidobacteria)下降了7.0%。曝气前,沉积物中聚磷菌的优势菌属包括Syntrophus(26.79%)、Anaeromyxobacter(14.6%)、Nitrospira(12.6%)和Anaerolinea(11.3%);而曝气后,聚磷菌优势菌属则为Pseudomonas(65.1%)和Clostridium(22.9%)。有机解磷菌的优势菌属在微纳米曝气前后同样发生了改变:在曝气前,优势菌属为Azospira、Mesorhizobium、Pseudomonas、Chelatococcus、Variovorax,分别占8.6%、5.4%、5.3%、5.2%、和5.2%;在曝气后,优势菌属则为Azospira、Variovorax、Chelatococcus、Pseudomonas、Acidovorax,分别占11.3%、6.5%、6.1%、5.9%和5.8%。冗余分析结果表明,不管是聚磷菌还是有机解磷菌,其群落组成与沉积物表层的溶解氧(DO)均显著相关(P<0.05)。微纳米曝气工程的实施,对水库沉积物微生物的群落组成、结构有一定影响。Abstract: In order to explore the effects of micro-nanometer aeration on bacterial and phosphorus functional bacterial communities in reservoir sediments, Dongyaxi reservoir in Sanming city was taken as the research object in this study. Illumina high-throughput sequencing was used to analyze the community composition and structure of bacteria, phosphorus-accumulating bacteria and organic phosphorus solubilizing bacteria before and after micro-nanometer aeration, as well as the correlation with environmental factors. The results show that micro-nanometer aeration had a certain influence on the microbial community in the sediment through oxygenation. After aeration, the abundance of Proteobacteria and Firmicutes increased by 24.7% and 8.3%, respectively. The abundance of Chloroflexi and Acidobacteria decreased by 5.9% and 7.0%, respectively. Before aeration, the dominant genera of phosphorus-accumulating bacteria in sediments included: Syntrophus (26.79%), Anaeromyxobacter(14.6%), Nitrospira(12.6%) and Anaerolinea (11.3%). After aeration, the dominant species were Pseudomonas (65.1%) and Clostridium (22.9%). The dominant genera of organic phosphorus solubilizing bacteria also changed before and after micro-nanometer aeration. Before micro-nanometer aeration, the dominant genera were Azospira, Mesorhizobium, Pseudomonas, Chelatococcus and Variovorax, accounting for 8.6%, 5.4%, 5.3%, 5.2% and 5.2%, respectively. After micro-nanometer aeration, the dominant genera were Azospira, Variovorax, Chelatococcus, Pseudomonas and Acidovorax, accounting for 11.3%, 6.5%, 6.1%, 5.9% and 5.8%, respectively. The results of redundancy analysis showed that there was a significant correlation between the community composition and the dissolved oxygen (DO) in sediment surface layer (P<0.05), regardless of phosphorus-accumulating bacteria or organic phosphorus solubilizing bacteria. The implementation of micro-nanometer aeration project has a certain influence on the composition and structure of microbial community in reservoir sediment.
-
表 1 微纳米曝气前后水体主要理化指标的变化
Table 1. Changes of water quality indexes after micro-nanometer aeration
采样批次 水层 pH DO/(mg·L−1) 水温/℃ 总氮/(mg·L−1) 总磷/(mg·L−1) 曝气前 表层 6.9±0.00 4.2±0.06 25.8±0.06 0.94±0.01 0.02±0.00 底层 6.8±0.10 3.0±0.15 25.4±0.25 曝气后 表层 7.2±0.06 8.2±0.06 17.3±0.06 0.92±0.01 0.03±0.00 底层 7.0±0.06 7.6±0.06 17.2±0.06 表 2 微纳米曝气前后沉积物细菌的多样性特征
Table 2. Diversity features of bacteria in sediments before and after micro-nanometer aeration
采样批次 OUT
数目Shannon指数 Simpson
指数ACE
指数Chao1
指数覆盖度 曝气前 18 632 8.78 6.7e-04 141 877.38 72 435.31 0.91 曝气后 12 377 7.29 0.01 102 868.55 50 368.36 0.99 表 3 微纳米曝气前后沉积物聚磷菌的多样性特征
Table 3. Diversity features of phosphorus-accumulating bacteria in sediments before and after micro-nanometer aeration
采样批次 OUT
数目Shannon指数 Simpson
指数ACE
指数Chao1
指数覆盖度/% 曝气前 672 4.01 0.05 878.26 838.92 99 曝气后 342 2.71 0.15 455.33 455.33 100 表 4 微纳米曝气前后沉积物有机解磷菌的多样性特征
Table 4. Diversity features of organic phosphorus solubilizing bacteria in sediments before and after micro-nanometer aeration
采样批次 OUT
数目Shannon指数 Simpson
指数ACE
指数Chao1
指数覆盖度/% 曝气前 4 973 6.63 6.6e-03 7 883.83 7 283.04 99 曝气后 4 029 6.74 3.9e-03 5 985.53 5 737.62 99 -
[1] UCHIDA T, YAMAZAKI K, GOHARA K. Generation of micro-and nano-bubbles in water by dissociation of gas hydrates[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1749-1755. doi: 10.1007/s11814-016-0032-7 [2] WU Y, LIN H, YIN W, et al. Water quality and microbial community changes in an urban river after micro-nano bubble technology in situ treatment[J]. Water, 2019, 11(1): 66. doi: 10.3390/w11010066 [3] 王硕, 刘蕴思, 李攀. 微纳米气泡对小微水体中好氧微生物群落的影响[J]. 中国给水排水, 2020, 36(15): 29-34. [4] 陆晖, 胡湛波, 蒋哲, 等. 微纳米曝气技术对城市景观水体修复的影响[J]. 环境工程学报, 2016, 10(4): 1755-1760. doi: 10.12030/j.cjee.20160427 [5] 潘俊, 孙舶洋, 魏炜, 等. 微纳米曝气-生态浮岛联合技术处理氮磷污染水体[J]. 环境工程, 2020, 38(5): 49-53. [6] 王骁, 吉贵祥, 周林军, 等. 微纳米气泡特性及黑臭河道环境修复工程应用[J]. 《环境工程》2019年全国学术年会论文集[C], 2019, 37: 116-120. [7] JING Z, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. doi: 10.1016/j.seppur.2018.02.003 [8] MOVAHED S, SARMAH A K. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis[J]. Science of the Total Environment, 2021, 785: 147362. doi: 10.1016/j.scitotenv.2021.147362 [9] 黄磊, 张太阳女, 苏玉萍, 等. 微纳米曝气工程对东牙溪水库水质改善效果[J]. 渔业研究, 2019, 41(5): 374-384. [10] 彭宇科, 路俊玲, 陈慧萍, 等. 蓝藻水华形成过程对氮磷转化功能细菌群的影响[J]. 环境科学, 2018, 39(11): 4938-4945. [11] 陈楠. 太湖沉积物微生物群落组成与物质循环及藻华爆发的相关性[D]. 北京: 中国农业大学, 2015. [12] 鲁小曼, 尚琨, 刘欣, 等. 长江口表层沉积物中可培养有机解磷菌多样性特征[J]. 海洋科学进展, 2019, 37(3): 495-507. doi: 10.3969/j.issn.1671-6647.2019.03.013 [13] 佘晨兴, 王静, 苏玉萍, 等. 福建省3座水库库心沉积物聚磷菌的群落特征[J]. 应用生态学报, 2019, 30(7): 2393-2403. [14] PAN Y W, CHENG K Y, KRISHNA K, et al. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community[J]. Journal of Environmental Management, 2018, 218: 569-578. doi: 10.1016/j.jenvman.2018.03.130 [15] 张丽敏, 曾薇, 王安其, 等. 城市污水处理厂Candidatus Accumulibacter的菌群结构及定量分析[J]. 环境科学学报, 2016, 36(4): 1226-1235. [16] 王向英, 武欣, 张杰, 等. 解磷菌在复垦土壤中的定殖及促生效果研究[J]. 东北农业大学学报, 2021, 52(7): 40-47. doi: 10.3969/j.issn.1005-9369.2021.07.005 [17] 宋娟, 徐国芳, 赵邢, 等. 枫香根际解有机磷细菌筛选及其促生效应(英文)[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 95-104. [18] 佘晨兴, 王静, 苏玉萍, 等. 三十六脚湖水库沉积物聚磷菌多样性及群落组成[J]. 应用与环境生物学报, 2018, 24(6): 1254-1262. [19] LIU Y Q, CAO X Y, LI H, et al. Distribution of phosphorus solubilizing bacteria in relation to fractionation and sorption behaviors of phosphorus in sediment of The Three Gorges Reservoir[J]. Environmental Science and Pollution Research, 2017, 24(21): 17679-17687. doi: 10.1007/s11356-017-9339-0 [20] 陈燕明. 东牙溪水库水质富营养化原因分析及防治对策[J]. 海峡科学, 2016, 114(6): 44-46. doi: 10.3969/j.issn.1673-8683.2016.06.014 [21] 林映津, 曾小妹, 陈倩, 等. 东牙溪水库蓝藻水华的应急与长效管控效果[J]. 渔业研究, 2020, 42(5): 429-444. [22] 李精精, 张玉珍. 综合营养状态指数法在东牙溪富营养化评价中的应用[J]. 海峡科学, 2017, 127(7): 3-5. doi: 10.3969/j.issn.1673-8683.2017.07.001 [23] RUBAN V, J F LÓPEZ-SÁNCHEZ, P PARDO, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-a synthesis of recent works[J]. Analytical and Bioanalytical Chemistry, 2001, 370(2): 224. [24] 林映津, 陈瑜. 湖库流域生态基因纳米调控装置: CN103739099. A[P]. 2014-04-23. [25] 林映津. 微气泡及微纳米气泡扩散装置: CN102351267. B[P]. 2013-05-08. [26] MEHLIG L, LUDWIG F, ESCHENHAGEN M, et al. Development of new primer systems for the detection of the polyphosphate kinase gene in activated sludge[J]. Water Science and Technology, 2009, 30(2): 213-218. [27] 廖梓鹏. 农田土壤微生物碱性磷酸酶基因的多样性及其对磷素响应[D]. 广州: 华南理工大学, 2017. [28] KOICHIRO T, JOEL D, MASATOSHI N, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599. doi: 10.1093/molbev/msm092 [29] 王丽娜, 陈辉煌, 刘乐冕, 等. 亚热带分层水库固氮微生物时空分布格局[J]. 生态学报, 2016, 36(18): 5827-5837. [30] YU Z, ZHOU J, YANG J, et al. Vertical distribution of diazotrophic bacterial community associated with temperature and oxygen gradients in a subtropical reservoir[J]. Hydrobiologia, 2014, 741(1): 69-77. doi: 10.1007/s10750-014-1832-6 [31] 张翠英, 徐德兰, 万蕾, 等. 云龙湖沉积物中氮磷含量和碱性磷酸酶活性季节变化分析[J]. 江西农业大学学报, 2013, 35(1): 209-215. doi: 10.3969/j.issn.1000-2286.2013.01.037 [32] 潘福霞, 来晓双, 王树志, 等. 曝气条件下进水C/N对水平潜流型人工湿地脱氮效果和氮转化功能微生物丰度的影响[J]. 环境工程学报, 2021, 15(4): 1386-1394. doi: 10.12030/j.cjee.202010136 [33] ZHAO Y, LIU B, ZHANG W, et al. Performance of pilot-scale vertical flow constructed wetlands in responding to variation ininfluent C/N ratios of simulated urban sewage[J]. Bioresource Technology, 2010, 101(6): 1693-1700. doi: 10.1016/j.biortech.2009.10.002 [34] ROBERTO A A, GRAY J, LEFF L G. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition[J]. Water Resource, 2018, 134: 353-369. [35] 姚丽平. 城市黑臭河道底泥微生物群落结构对人工曝气的响应特征及机理研究[D]. 上海: 华东师范大学, 2014. [36] SUN Y, WANG S, NIU J. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology[J]. Bioresource Technology, 2018, 258: 187-194. doi: 10.1016/j.biortech.2018.03.008 [37] 伍思宇, 周志如, 尤青, 等. 海南东寨港红树林聚磷菌的筛选及其特性[J]. 应用与环境生物学报, 2016, 22(3): 397-401. [38] 李莹杰. 长江中下游湖泊沉积物中磷的GIS分布特征及解磷菌的研究[D]. 武汉: 武汉理工大学, 2016. [39] 王琛, 田欣欣, 曲凌云. 九龙江口解有机磷细菌的解磷特性[J]. 海洋环境科学, 2013, 32(5): 736-740. [40] 佘晨兴, 林洪, 苏玉萍, 等. 闽江口-平潭海域有机解磷菌多样性及群落特征[J]. 应用生态学报, 2021, 32(5): 1863-1872. [41] IZADI P, IZADI P, ELDYASTI A. Understanding microbial shift of enhanced biological phosphorus removal process (EBPR) under different dissolved oxygen (DO) concentrations and hydraulic retention time (HRTs)[J]. Biochemical Engineering Journal, 2020, 166: 107833. [42] 夏超. 溶解氧对水源水库多相界面微生物群落的影响研究[D]. 西安: 西安建筑科技大学, 2020. [43] HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al. Shifts in microbial community structure along anecological gradient of hypersaline soils and sediments[J]. The ISME Journal, 2010, 4(6): 829-838. doi: 10.1038/ismej.2010.3 [44] 李勇. 三岔湖微生物群落结构及其在磷素迁移转化中的作用[D]. 成都: 西南交通大学, 2020. [45] 苏玉萍, 郑达贤, 曾花森, 等. 浅层湖泊沉积物碱性磷酸酶活性垂向特征初探[J]. 福建师范大学学报(自然科学版), 2005, 21(3): 35-38. [46] 刘欣. 长江口低氧区表层沉积物中微生物群落及phoD碱性磷酸酶基因的时空变化[D]. 山东: 齐鲁工业大学, 2019. [47] 王晓蓉, 华兆哲, 徐菱, 等. 环境条件变化对太湖沉积物磷释放的影响[J]. 环境化学, 1996, 15(1): 15-19. [48] SIMON H M, SMITH M W, HERFORT L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem[J]. Frontiers in Microbiology, 2014, 5(466): 1-10. [49] 杜萍, 刘晶晶, 曾江宁, 等. 长江口低氧区异养细菌及氮磷细菌分布[J]. 应用生态学报, 2011, 22(5): 1316-1324.