-
厌氧氨氧化(anaerobic ammonium oxidation, anammox)工艺相较于传统硝化-反硝化脱氮工艺,具有曝气量少、不消耗有机物及污泥产率低等特点[1-3],并已成功应用于城市污水处理厂污泥水及与此类似的含有高浓度氨氮废水[4-6]。在厌氧氨氧化技术成功应用于处理高浓度含氮废水后,研究重点则从处理水量小、浓度高的污泥水(侧流)转变到处理水量大、浓度低的城镇污水(主流)处理[7-10]。
厌氧氨氧化反应的功能菌为厌氧氨氧化菌(AnAOB),而温度是AnAOB生长和代谢的一个重要参数,大多数厌氧氨氧化菌的最适生长温度为30~35 ℃[11]。而在实际污水处理厂主流的水温基本处于10~25 ℃。有研究[12-13]表明,温度每降低5 ℃,厌氧氨氧化菌的比生长速率下降30%~40%,从而影响反应器的脱氮效能。MA等[14]在利用厌氧氨氧化UASB反应器在中低温条件下处理低浓度废水时发现,当反应器温度由30 ℃降至16 ℃时,总氮去除率下降62%。因此,研究厌氧氨氧化菌活性随温度变化的规律对anammox技术应用于城市污水主流处理具有重要意义。
近年来,相比于传统活性污泥工艺,基于生物膜或颗粒污泥的主流工艺表现突出[15]。有研究表明,相较于活性污泥,在温度低于15 ℃的条件下,好氧颗粒污泥可长期稳定进行亚硝化过程并表现出0.63~0.7 kg·(m3·d)−1(以氮素计)的处理能力[16-17]。这说明不同形态的污泥在遭受温度变化时微生物响应特征存在差异。LOTTI等[18]在温度为10~30 ℃条件下,研究了以游离态和颗粒态存在的厌氧氨氧化菌的反应活化能,结果表明,以游离态存在的厌氧氨氧化菌对温度变化的敏感程度大于厌氧氨氧化颗粒污泥。这说明厌氧氨氧化菌的存在形态影响其对温度的适应性。随着以颗粒污泥和生物膜形式的厌氧氨氧化技术拟在城市污水处理厂主流工艺应用中的推进,厌氧氨氧化菌在不同温度和污泥形态条件下的反应活性和特性亟需了解和研究。
本研究以培养成熟的厌氧氨氧化颗粒污泥和生物膜为研究对象,通过测定anammox菌在不同温度(15~35 ℃)和不同形态下(游离态、颗粒污泥和生物膜)的活性,探讨了厌氧氨氧化反应的活化能和温度系数的变化,以期为厌氧氨氧化技术在主流系统脱氮的应用提供参考。
温度变化对不同污泥形态厌氧氨氧化菌活性的影响
Effect of temperature change on anammox activities with different sludge morphology
-
摘要: 以Ca. Brocadia为主要种属的厌氧氨氧化颗粒污泥和生物膜为研究对象,通过测定不同温度下厌氧氨氧反应活化能以探讨温度对以不同污泥形态存在的厌氧氨氧化菌的短期影响。结果表明,在15~25 ℃和25~35 ℃,以颗粒污泥及生物膜形态存在的厌氧氨氧化菌的反应活化能不同。在15~25 ℃,颗粒污泥和生物膜中的厌氧氨氧化反应活化能分别为105.60 kJ·mol−1和88.25 kJ·mol−1,而在25~35 ℃,对应的活化能分别为62.15 kJ·mol−1和56.78 kJ·mol−1,均低于同温度条件下以游离态存在的厌氧氨氧化菌的反应活化能。这说明不同污泥形态对Anammox菌的温度效应不同,以生物膜和颗粒污泥形态存在的厌氧氨氧化菌具有较强抵抗温度变化的能力。在15~25 ℃,颗粒污泥和生物膜中厌氧氨氧化菌的温度系数θ分别为1.14和1.12,在25~35 ℃,对应的温度系数θ分别为1.09和1.08。与硝化菌或反硝化菌相比,厌氧氨氧化菌的温度系数
$ \theta $ 偏大。这表明厌氧氨氧化菌对温度的变化更为敏感,使得厌氧氨氧化在低温条件下首先将成为限制步。Abstract: To investigate the short-term effects of temperature on Ca. Brocadia anammox bacteria with granular sludge and biofilm, ex-situ batch experiments were conducted to test the reaction activation energy (Ea) of anammox. The results showed that the Ea of granular sludge and biofilm increased with decreasing temperature. The Ea values of granular sludge and biofilm were 105.60 kJ·mol−1 and 88.25 kJ·mol−1 between 15~25 ℃ and 62.15 kJ·mol−1 and 56.78 kJ·mol−1 between 25~35 ℃, respectively, they were lower than that of anammox existed in suspended state at the same temperature. This result indicated that the temperature effect was dependent on the sludge morphology. Anammox bacteria in granular sludge and biofilm had a better ability to resist temperature changes than that of anammox bacteria in suspended state. Notably, at 15~25 ℃ and 25~35 ℃, the temperature coefficient (θ) of anammox bacteria in granular sludge and biofilm were 1.14, 1.12 and 1.09, 1.08, respectively. Compared to nitrifying bacteria or denitrifying bacteria, the obtained θ values of anammox bacteria were relatively higher, indicating that anammox bacteria were more sensitive to temperature changes. Therefore, anammox process will be the limiting step when the temperature drops. -
表 1 不同实验厌氧氨氧化反应Ea值
Table 1. Ea values for anaerobic ammonia oxidation reactions in different tests
污泥形态 anammox种属 Ea/(kJ·mol−1) 参考文献 生物膜 Ca. Brocadia 88.25(15~25 ℃);56.78(25~35 ℃) 本研究 生物膜(游离) 104.52(15~25 ℃);65.42(25~35 ℃) 颗粒污泥 Ca. Brocadia 105.60(15~25 ℃); 62.15(25~35 ℃) 本研究 颗粒污泥(游离) 132.00(15~25 ℃);68.60(25~35 ℃) 颗粒污泥 Ca. Kuenenia
Ca.Jettenia93~94(6~28 ℃);33(28~37 ℃) [27] 颗粒污泥 Ca.Brocadia 230(10~15 ℃);105(15~20 ℃)
68(20~25 ℃);46(25~30 ℃)[18] 颗粒污泥 Ca. Kuenenia 89(20~43 ℃) [37] 颗粒污泥 Ca. Kuenenia. 72.8(10~30 ℃) [37] 颗粒污泥 Ca.Brocadia 89.6(13~23 ℃);16.4(23~33 ℃) [37] 活性污泥 Ca. Brocadia 107.4(10~25 ℃) [37] 活性污泥 Ca. Brocadia 70(20~43 ℃) [13] 活性污泥 Ca.Brocadia 293(10~15 ℃);131(15~20 ℃)
79(20~25 ℃);68(25~30 ℃)[18] 表 2 厌氧氨氧化工艺中功能微生物的KT和θ
Table 2. KT and θ of functional microorganisms in anammox process
-
[1] ZHANG L, NARITA Y, GAO L, et al. Microbial competition among anammox bacteria in nitrite-limited bioreactors[J]. Water Research, 2017, 125: 249-258. doi: 10.1016/j.watres.2017.08.052 [2] MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074 [3] WANG G, XU X, ZHOU L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. doi: 10.1016/j.biortech.2017.02.125 [4] AZARI M, WALTER U, REKERS V, et al. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm[J]. Chemosphere, 2017, 174: 117-126. doi: 10.1016/j.chemosphere.2017.01.123 [5] SCHAUBROECK T, CLIPPELEIR D, WEISSENBACHER N, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion[J]. Water Research, 2015, 2015(74): 166-179. [6] WANG C, LEE P H, KUMAR M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J]. Journal of Hazardous Materials, 2014, 175: 622-628. [7] KARTAL B, KUENEN J G, LOOSDRECHT M C M V. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941 [8] AKABOCI T R V, GICH F, RUSCALLEDA M. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200. doi: 10.1016/j.cej.2018.05.115 [9] KAMP A, OTTOSEN L D M, THøGERSEN N B, et al. Anammox and partial nitritation in the mainstream of a wastewater treatment plant in a temperate region (Denmark)[J]. Water Science & Technology, 2019, 79: 1397-1405. [10] CAO Y, LOOSDRECHT M C M V, DAIGGER G T. Mainstream partial nitritation–anammox in municipal wastewater treatment: Status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7 [11] 郑平, 胡宝兰. 厌氧氨氧化菌混培物生长及代谢动力学研究[J]. 生物工程学报, 2001(02): 193-198. doi: 10.3321/j.issn:1000-3061.2001.02.018 [12] DOSTA J, FERNANDEZ I, VAZQUEZ-PADIN J R, et al. Short- and long-term effects of temperature on the Anammox process[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 688-693. [13] STROUS M M, KUENEN J, JETTEN M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999 [14] MA B, PENG Y, ZHANG S, et al. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures[J]. Bioresource Technology, 2013, 129(2): 606-611. [15] ALBERT B, JULIO P, JULIáN C. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions[J]. Environmental Science & Technology, 2010, 44(23): 8930-8935. [16] ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80(sep.1): 149-158. [17] REINO C, SUáREZ-OJEDA M, PéREZ J, et al. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10°C[J]. Water Research, 2016, 101: 147-156. doi: 10.1016/j.watres.2016.05.059 [18] LOTTI T, KLEEREBEZEM R, LOOSDRECHT M V. Effect of temperature change on anammox activity[J]. Biotechnology & Bioengineering, 2015, 112(1): 98-103. [19] LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60(14): 1-14. [20] 国家环境保护局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. [21] KUENEN J G. Anammox bacteria: From discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326. doi: 10.1038/nrmicro1857 [22] CAO S, DU R, PENG Y, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362: 107-115. doi: 10.1016/j.cej.2018.12.160 [23] LAURENI M, FALAS P, ROBIN O, et al. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. doi: 10.1016/j.watres.2016.05.005 [24] CLARACREINO, SUáREZ-OJEDA M E, PéREZ J, et al. Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions[J]. Water Research, 2018, 128: 331-340. doi: 10.1016/j.watres.2017.10.058 [25] FERNáNDEZ-GóMEZ B, RICHTER M, SCHüLER M, et al. Ecology of marine Bacteroidetes: A comparative genomics approach[J]. The International Society for Microbial Ecology Journal, 2013, 7(5): 1026-1037. [26] 谭锡诚. Anammox系统对温度变化的响应规律研究[D]. 徐州: 中国矿业大学, 2017. [27] KAZUICHI I, YASUHIRO D, YUYA K, et al. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures[J]. FEMS Microbiology Letters, 2008, 282(1): 32-38. doi: 10.1111/j.1574-6968.2008.01095.x [28] MA H, ZHANG Y, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of The Total Environment, 2019, 659: 568-577. doi: 10.1016/j.scitotenv.2018.12.377 [29] 王淑莹, 刘旭, 吴蕾. 温度和游离氨对颗粒与絮状污泥硝化性能影响的对比研究[J]. 北京工业大学学报, 2013, 39(2): 297-303. [30] LI Z, XU X, SHAO B, et al. Anammox granules formation and performance in a submerged anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2014, 254: 9-16. doi: 10.1016/j.cej.2014.04.068 [31] NI B J, HU B L, FANG F, et al. Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor.[J]. Applied and Environmental Microbiology, 2010, 76(8): 2652-2656. doi: 10.1128/AEM.02271-09 [32] TANG C-J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2010, 45(1): 135-144. [33] 李惠娟. 部分亚硝化/厌氧氨氧化处理高氨氮废水试验研究[D]. 西安: 西安建筑科技大学, 2017. [34] 杨明明. 厌氧氨氧化颗粒污泥胞外聚合物(EPS)及表面特性研究[D]. 重庆: 重庆大学, 2019. [35] 彭永臻, 王锦程, 李翔晨, 等. 氮负荷对短程反硝化耦合厌氧氨氧化生物膜系统脱氮性能的影响[J]. 北京工业大学学报, 2021, 47(12): 1367-1376. [36] 郭静. 胞外聚合物对厌氧氨氧化污泥性能的影响研究[D]. 徐州: 中国矿业大学, 2017. [37] PARK G, TAKEKAWA M, SODA S, et al. Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures[J]. Journal of Bioscience & Bioengineering, 2016, 123(4): 505-511. [38] GUO J, PENG Y, HUANG H, et al. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 471-479. [39] 包毅, 宋家俊, 阴方芳, 等. 低温对亚硝化颗粒污泥系统的影响特性[J]. 环境工程, 2020, 38(12): 32-37. [40] SALVETTI R, AZZELLINO A, CANZIANI R, et al. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors[J]. Water Research, 2006, 40(15): 2981-2993. doi: 10.1016/j.watres.2006.05.013 [41] SEUNTJENS D, HAN M, KERCKHOF F M, et al. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants[J]. Water Research, 2018, 138(JUL.1): 37-46. [42] 马娟, 彭永臻, 王丽, 等. 温度对反硝化过程的影响以及pH值变化规律[J]. 中国环境科学, 2008(11): 1004-1008. doi: 10.3321/j.issn:1000-6923.2008.11.009 [43] KAZMI A. A, FURUMAI H. Field investigations on reactive settling in an intermittent aeration sequencing batch reactor activated sludge process[J]. Water Science and Technology, 2000, 41(1): 127-135. doi: 10.2166/wst.2000.0021