[1] |
UCHIDA T, YAMAZAKI K, GOHARA K. Generation of micro-and nano-bubbles in water by dissociation of gas hydrates[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1749-1755. doi: 10.1007/s11814-016-0032-7
|
[2] |
WU Y, LIN H, YIN W, et al. Water quality and microbial community changes in an urban river after micro-nano bubble technology in situ treatment[J]. Water, 2019, 11(1): 66. doi: 10.3390/w11010066
|
[3] |
王硕, 刘蕴思, 李攀. 微纳米气泡对小微水体中好氧微生物群落的影响[J]. 中国给水排水, 2020, 36(15): 29-34.
|
[4] |
陆晖, 胡湛波, 蒋哲, 等. 微纳米曝气技术对城市景观水体修复的影响[J]. 环境工程学报, 2016, 10(4): 1755-1760. doi: 10.12030/j.cjee.20160427
|
[5] |
潘俊, 孙舶洋, 魏炜, 等. 微纳米曝气-生态浮岛联合技术处理氮磷污染水体[J]. 环境工程, 2020, 38(5): 49-53.
|
[6] |
王骁, 吉贵祥, 周林军, 等. 微纳米气泡特性及黑臭河道环境修复工程应用[J]. 《环境工程》2019年全国学术年会论文集[C], 2019, 37: 116-120.
|
[7] |
JING Z, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. doi: 10.1016/j.seppur.2018.02.003
|
[8] |
MOVAHED S, SARMAH A K. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis[J]. Science of the Total Environment, 2021, 785: 147362. doi: 10.1016/j.scitotenv.2021.147362
|
[9] |
黄磊, 张太阳女, 苏玉萍, 等. 微纳米曝气工程对东牙溪水库水质改善效果[J]. 渔业研究, 2019, 41(5): 374-384.
|
[10] |
彭宇科, 路俊玲, 陈慧萍, 等. 蓝藻水华形成过程对氮磷转化功能细菌群的影响[J]. 环境科学, 2018, 39(11): 4938-4945.
|
[11] |
陈楠. 太湖沉积物微生物群落组成与物质循环及藻华爆发的相关性[D]. 北京: 中国农业大学, 2015.
|
[12] |
鲁小曼, 尚琨, 刘欣, 等. 长江口表层沉积物中可培养有机解磷菌多样性特征[J]. 海洋科学进展, 2019, 37(3): 495-507. doi: 10.3969/j.issn.1671-6647.2019.03.013
|
[13] |
佘晨兴, 王静, 苏玉萍, 等. 福建省3座水库库心沉积物聚磷菌的群落特征[J]. 应用生态学报, 2019, 30(7): 2393-2403.
|
[14] |
PAN Y W, CHENG K Y, KRISHNA K, et al. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community[J]. Journal of Environmental Management, 2018, 218: 569-578. doi: 10.1016/j.jenvman.2018.03.130
|
[15] |
张丽敏, 曾薇, 王安其, 等. 城市污水处理厂Candidatus Accumulibacter的菌群结构及定量分析[J]. 环境科学学报, 2016, 36(4): 1226-1235.
|
[16] |
王向英, 武欣, 张杰, 等. 解磷菌在复垦土壤中的定殖及促生效果研究[J]. 东北农业大学学报, 2021, 52(7): 40-47. doi: 10.3969/j.issn.1005-9369.2021.07.005
|
[17] |
宋娟, 徐国芳, 赵邢, 等. 枫香根际解有机磷细菌筛选及其促生效应(英文)[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 95-104.
|
[18] |
佘晨兴, 王静, 苏玉萍, 等. 三十六脚湖水库沉积物聚磷菌多样性及群落组成[J]. 应用与环境生物学报, 2018, 24(6): 1254-1262.
|
[19] |
LIU Y Q, CAO X Y, LI H, et al. Distribution of phosphorus solubilizing bacteria in relation to fractionation and sorption behaviors of phosphorus in sediment of The Three Gorges Reservoir[J]. Environmental Science and Pollution Research, 2017, 24(21): 17679-17687. doi: 10.1007/s11356-017-9339-0
|
[20] |
陈燕明. 东牙溪水库水质富营养化原因分析及防治对策[J]. 海峡科学, 2016, 114(6): 44-46. doi: 10.3969/j.issn.1673-8683.2016.06.014
|
[21] |
林映津, 曾小妹, 陈倩, 等. 东牙溪水库蓝藻水华的应急与长效管控效果[J]. 渔业研究, 2020, 42(5): 429-444.
|
[22] |
李精精, 张玉珍. 综合营养状态指数法在东牙溪富营养化评价中的应用[J]. 海峡科学, 2017, 127(7): 3-5. doi: 10.3969/j.issn.1673-8683.2017.07.001
|
[23] |
RUBAN V, J F LÓPEZ-SÁNCHEZ, P PARDO, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-a synthesis of recent works[J]. Analytical and Bioanalytical Chemistry, 2001, 370(2): 224.
|
[24] |
林映津, 陈瑜. 湖库流域生态基因纳米调控装置: CN103739099. A[P]. 2014-04-23.
|
[25] |
林映津. 微气泡及微纳米气泡扩散装置: CN102351267. B[P]. 2013-05-08.
|
[26] |
MEHLIG L, LUDWIG F, ESCHENHAGEN M, et al. Development of new primer systems for the detection of the polyphosphate kinase gene in activated sludge[J]. Water Science and Technology, 2009, 30(2): 213-218.
|
[27] |
廖梓鹏. 农田土壤微生物碱性磷酸酶基因的多样性及其对磷素响应[D]. 广州: 华南理工大学, 2017.
|
[28] |
KOICHIRO T, JOEL D, MASATOSHI N, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599. doi: 10.1093/molbev/msm092
|
[29] |
王丽娜, 陈辉煌, 刘乐冕, 等. 亚热带分层水库固氮微生物时空分布格局[J]. 生态学报, 2016, 36(18): 5827-5837.
|
[30] |
YU Z, ZHOU J, YANG J, et al. Vertical distribution of diazotrophic bacterial community associated with temperature and oxygen gradients in a subtropical reservoir[J]. Hydrobiologia, 2014, 741(1): 69-77. doi: 10.1007/s10750-014-1832-6
|
[31] |
张翠英, 徐德兰, 万蕾, 等. 云龙湖沉积物中氮磷含量和碱性磷酸酶活性季节变化分析[J]. 江西农业大学学报, 2013, 35(1): 209-215. doi: 10.3969/j.issn.1000-2286.2013.01.037
|
[32] |
潘福霞, 来晓双, 王树志, 等. 曝气条件下进水C/N对水平潜流型人工湿地脱氮效果和氮转化功能微生物丰度的影响[J]. 环境工程学报, 2021, 15(4): 1386-1394. doi: 10.12030/j.cjee.202010136
|
[33] |
ZHAO Y, LIU B, ZHANG W, et al. Performance of pilot-scale vertical flow constructed wetlands in responding to variation ininfluent C/N ratios of simulated urban sewage[J]. Bioresource Technology, 2010, 101(6): 1693-1700. doi: 10.1016/j.biortech.2009.10.002
|
[34] |
ROBERTO A A, GRAY J, LEFF L G. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition[J]. Water Resource, 2018, 134: 353-369.
|
[35] |
姚丽平. 城市黑臭河道底泥微生物群落结构对人工曝气的响应特征及机理研究[D]. 上海: 华东师范大学, 2014.
|
[36] |
SUN Y, WANG S, NIU J. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology[J]. Bioresource Technology, 2018, 258: 187-194. doi: 10.1016/j.biortech.2018.03.008
|
[37] |
伍思宇, 周志如, 尤青, 等. 海南东寨港红树林聚磷菌的筛选及其特性[J]. 应用与环境生物学报, 2016, 22(3): 397-401.
|
[38] |
李莹杰. 长江中下游湖泊沉积物中磷的GIS分布特征及解磷菌的研究[D]. 武汉: 武汉理工大学, 2016.
|
[39] |
王琛, 田欣欣, 曲凌云. 九龙江口解有机磷细菌的解磷特性[J]. 海洋环境科学, 2013, 32(5): 736-740.
|
[40] |
佘晨兴, 林洪, 苏玉萍, 等. 闽江口-平潭海域有机解磷菌多样性及群落特征[J]. 应用生态学报, 2021, 32(5): 1863-1872.
|
[41] |
IZADI P, IZADI P, ELDYASTI A. Understanding microbial shift of enhanced biological phosphorus removal process (EBPR) under different dissolved oxygen (DO) concentrations and hydraulic retention time (HRTs)[J]. Biochemical Engineering Journal, 2020, 166: 107833.
|
[42] |
夏超. 溶解氧对水源水库多相界面微生物群落的影响研究[D]. 西安: 西安建筑科技大学, 2020.
|
[43] |
HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al. Shifts in microbial community structure along anecological gradient of hypersaline soils and sediments[J]. The ISME Journal, 2010, 4(6): 829-838. doi: 10.1038/ismej.2010.3
|
[44] |
李勇. 三岔湖微生物群落结构及其在磷素迁移转化中的作用[D]. 成都: 西南交通大学, 2020.
|
[45] |
苏玉萍, 郑达贤, 曾花森, 等. 浅层湖泊沉积物碱性磷酸酶活性垂向特征初探[J]. 福建师范大学学报(自然科学版), 2005, 21(3): 35-38.
|
[46] |
刘欣. 长江口低氧区表层沉积物中微生物群落及phoD碱性磷酸酶基因的时空变化[D]. 山东: 齐鲁工业大学, 2019.
|
[47] |
王晓蓉, 华兆哲, 徐菱, 等. 环境条件变化对太湖沉积物磷释放的影响[J]. 环境化学, 1996, 15(1): 15-19.
|
[48] |
SIMON H M, SMITH M W, HERFORT L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem[J]. Frontiers in Microbiology, 2014, 5(466): 1-10.
|
[49] |
杜萍, 刘晶晶, 曾江宁, 等. 长江口低氧区异养细菌及氮磷细菌分布[J]. 应用生态学报, 2011, 22(5): 1316-1324.
|