-
全氟烷基酸(perfluoroalkyl acids,PFAAs)是由完全氟化的烷基链和酸性官能团组成的化合物,因其兼具疏水性和疏油性等化学特性,常作为工业助剂和表面活性剂而应用于工业和消费品生产领域,如金属电镀、半导体、家具和烹饪器具等[1]。在2009年,PFAAs被列入斯德哥尔摩公约的新型持久性有机污染物。PFAAs易在生物体内聚集,能够长距离迁移、沉积和附着,一旦进入人体后很难通过代谢降解方式排出体外,可对肝脏、内分泌、神经系统和免疫性能等方面产生毒性危害[2]。PFAAs家族成员PFOA和 PFOS因其稳定性,应用最为广泛,且作为全氟化合物前体的最终降解物质,在自然环境中检测频率最高[3]。随着氟化工产业的快速发展,中国逐渐成为氟化产品生产和使用大国。秦交友等[4]的研究表明,我国东南地区主要河流表层水体中PFAAs质量浓度为0.90~231.52 ng·L−1,部分河段PFOA和PFOS的生态风险熵大于1,主要排放源为工业污水排放。LI等[5]研究表明,小清河流域道PFAAs总质量浓度高达325.280 µg·L−1。
由于PFAAs在水环境中广泛检出,故有关PFAAs的去除方法备受学者们关注。目前的去除方法集中在微波降解法、膜处理法、高级氧化法、吸附法和植物富集等。其中化学方法大多数条件复杂、能耗高,比较经济实用的方法主要为吸附法和植物吸收法[6-7]。用于处理含氟水体的吸附剂主要包括金属氧化物、离子交换树脂、沉积物、碳材料和矿物材料等,在pH、温度、吸附时间和离子强度等因素的干扰下,各吸附剂对PFAAs的吸附容量有较大波动[8]。植物修复已作为富营养化水体的常用修复技术。有研究[9]表明,除了氮磷等营养盐外,一些具有耐盐和耐毒性植物还可以直接吸收水体中的有机污染物和重金属并将其富集于体内。YIN等[10]的研究表明,芦苇床对水体中PFAAs的去除率最高可达42%~49%;孔潇潇等[11]发现,金鱼藻对PFOS的去除率可达90%以上;在实际河岸湿地植物调查中发现,凤眼莲对PFOA的生物浓缩系数最高,并且具有纤维生根系统的植物对PFOA积累量更高[12]。
已有研究表明,水生植物对单一的营养盐或全氟烷基酸污染的水体具有一定的修复效果,但关于其对于含有这些污染物复合污染水体的研究较少。基于此,本研究针对营养盐和全氟烷基酸复合污染水体的处理问题,选取4种水生植物进行室内静态水培实验,对比研究了不同水生植物对复合污染水体的修复效果,以期为水生植物在水体治理修复工程中的应用提供参考。
4种水生植物对复合污染水体中营养盐和全氟烷基酸的去除效果
Removal effect of nutrient salts and perfluoroalkyl acids in waterbody with combined pollutants by 4 aquatic plants
-
摘要: 近年来,水体中全氟烷基酸的暴露、来源和去除受到国内外关注,关于植物对全氟烷基酸单一污染水体净化的研究较多,但对于水体营养盐和全氟烷基酸等复合污染治理的研究较为缺乏。为此,选取鸢尾(Iris tectorum)、芦苇(Phragmites australis)、金鱼藻(Phragmites australis)和眼子菜(Potamogetonpusillus)为研究对象,通过室内水培实验研究了4种水生植物对复合污染水体中营养盐和全氟烷基酸(PFAAs)的去除效果。结果表明,4种水生植物对复合污染水体中营养盐和全氟烷基酸(PFAAs)均具有较好的去除能力,且不同植物对各污染物的去除效果有所差异。各植物对TN、TP、全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的去除率分别为(56.36±4.83)%~(79.90±4.79)%、(47.36±2.18)%~(64.52±4.78)%、(38.25±3.25)%~(67.33±5.58)%和(46.23±3.93)%~(83.14±5.49)%。鸢尾对营养盐的去除效果最好,对TN和TP的去除率分别为(79.90±4.79)%和(64.52±4.78)%,但对PFOA和PFOS的去除率仅为(38.25±3.25)%和(46.23±3.93)%;金鱼藻对全氟烷基酸的去除效果显著,其植株体内PFOA和PFOS的富集含量分别可达(31.56±1.01) µg·g−1和(37.15±1.54) µg·g−1。所有植物对PFOS的富集效果优于PFOA,且在挺水植物中,PFOS比PFOA更倾向于在植物根部积累。Abstract: In recent years, the exposure, source identification and removal of perfluoroalkyl acids have received extensive attentions. The existing studies mainly focused on the purification effect of perfluoroalkyl acid polluted waterbody by plants, however, few studies paid attention to the nutrient salts and perfluoroalkyl acids polluted waterbody. In this study, Tectorum, Phragmites australis, Phragmites australis and Potamogetonpusillus was selected as research objects. Laboratory hydroponic experiments were conducted to study the removal effect of nitrogen, phosphorus and perfluoroalkyl acids(PFAAs) by four plants. The results showed that all four plants had good purification effect on nutrients and perfluoroalkyl acids (PFAAs) in waterbody with combined pollutants, and different plants presented different removal effects. The removal rates of TN, TP, PFOA and PFOS were (56.36±4.83)%~(79.90±4.79)%, (47.36±2.18)%~(64.52±4.78)%, (38.25±3.25)%~(67.33±5.58)% and (46.23±3.93)%~(83.14±5.49)%, respectively. Iris tectorum showed the best removal effect of TN and TP, and the corresponding removal rates were (79.90±4.79)% and (64.52±4.78)%, respectively, but the removal rates of Iris tectorum on PFOA and PFOS were only (38.25±3.25)% and (46.23±3.93)%, respectively. Phragmites australis showed the best removal effect of perfluoroalkyl acids, the PFOA and PFOS enrichment in the plants were up to (31.56±1.01) µg·g−1 and (37.15±1.54) µg·g−1, respectively. The enrichment effect of PFOS in all plants was better than that of PFOA, and in emergent plants, PFOS was more inclined to accumulate in plant roots than PFOA.
-
Key words:
- phytoremediation /
- polluted waterbody /
- nutrients salts /
- perfluoroalkyl acids
-
表 1 实验水生植物种类
Table 1. Species of aquatic plants selected in the experiment
植物名称 科 生活类型 鸢尾 鸢尾科 挺水草本 芦苇 禾本科 挺水草本 篦齿眼子菜 眼子菜科 沉水草本 金鱼藻 金鱼藻科 沉水草本 表 2 不同水生植物对营养盐物质的去除率
Table 2. Removal rate of nutrients bydifferent aquatic plants
% 污染物 CK 鸢尾 芦苇 金鱼藻 眼子菜 TN 29.85±1.79 79.90±4.79 73.95±2.21 63.75±6.05 56.36±4.83 TP 24.44±1.46 64.52±4.78 52.52±3.25 58.99±2.44 47.36±2.18 表 3 不同水生植物对全氟烷基酸的去除率
Table 3. Removal rate of perfluoroalkyl acids by different aquatic plants
% 污染物 CK 鸢尾 芦苇 金鱼藻 眼子菜 PFOA 15.54±0.59 38.25±3.25 49.71±3.18 67.33±5.58 63.44±4.79 PFOS 20.56±1.22 46.23±3.93 60.47±4.29 83.14±5.49 75.43±5.34 表 4 不同植物对PFOA、PFOS的富集系数和转移系数
Table 4. Enrichment and transfer coefficients of PFOA and PFOS in different plants
植物 部位 富集系数 转移系数 BFPFOA BFPFOS TFPFOA TFPFOS 鸢尾 水下部分 0.34 0.50 0.44 0.34 水上部分 0.15 0.17 芦苇 水下部分 0.74 1.29 0.27 0.20 水上部分 0.20 0.26 金鱼藻 水下部分 1.98 4.66 眼子菜 水下部分 1.15 1.96 -
[1] 史亚利, 潘媛媛, 王杰明, 等. 全氟化合物的环境问题[J]. 化学进展, 2009, 21(2): 369-376. [2] 任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012 [3] FU J, GAO Y, CUI L, et al. Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China[J]. Science Report, 2016, 6: 38039. doi: 10.1038/srep38039 [4] 秦文友, 周云桥, 张梦, 等. 中国东南主要河流表层水中全氟烷基酸的赋存特征及风险评价[J]. 环境化学, 2021, 40(6): 1749-1762. [5] LI Q, ZHANG Y, LU Y, et al. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim[J]. Chemosphere, 2018, 204: 28-35. doi: 10.1016/j.chemosphere.2018.04.030 [6] 刘洋, 胡筱敏, 赵研, 等. 全氟化合物及其替代品的处理技术[J]. 环境化学, 2018, 37(8): 1860-1868. doi: 10.7524/j.issn.0254-6108.2017122904 [7] LI P, ZHI D, ZHANG X, et al. Research progress on the removal of hazardous perfluorochemicals: A review[J]. Journal of Environmental Management, 2019, 250: 109488. doi: 10.1016/j.jenvman.2019.109488 [8] 洪雷, 丁倩云, 亓祥坤, 等. 吸附法去除水中全氟化合物的研究进展[J]. 环境化学, 2021, 40(7): 2193-2203. doi: 10.7524/j.issn.0254-6108.2020031303 [9] 唐宇力, 钱萍, 张海珍, 等. 8种观赏水湿生植物对重金属Cd和Pb的吸收固定能力[J]. 环境工程学报, 2017, 11(9): 5313-5319. doi: 10.12030/j.cjee.201701060 [10] YIN T, TRAN N H, et al. Biotransformation of polyfluoroalkyl substances by microbial consortia from constructed wetlands under aerobic and anoxic conditions[J]. Chemosphere, 2019, 233: 101-109. doi: 10.1016/j.chemosphere.2019.05.227 [11] 孔潇潇, 王铁宇, 张晓军, 等. 全氟化合物对水生植物的生态效应研究Ⅱ: 金鱼藻对水中PFOS的生物富集及生理响应[J]. 生态毒理学报, 2015, 10(2): 445-453. [12] MUDUMBI J B N, NTWAMPE S K O, MUGANZA M, et al. Susceptibility of Riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation[J]. International journal of phytoremediation, 2014, 16(9): 926-936. doi: 10.1080/15226514.2013.810574 [13] 国家环境保护总局. 水和废水监测分析方法(第四版) [M]. 北京: 中国环境科学出版社, 2002. [14] WANG P, LU Y, WANG T, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities[J]. Environmental Pollution, 2014, 190: 115-122. doi: 10.1016/j.envpol.2014.03.030 [15] FELIZETER S, MCLACHLAN M S, et al. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)[J]. Environmental Science & Technology, 2012, 46(21): 11735-11743. [16] 胡世琴. 人工湿地不同植被净化污水效果及其氮磷累积研究[J]. 水土保持研究, 2017, 24(1): 200-206. [17] 樊恒亮, 谢丽强, 宋晓梅, 等. 沉水植物对水体营养的响应及氮磷积累特征[J]. 环境科学与技术, 2017, 40(3): 42-48. [18] LEE C, FLETCHER T D, SUN G. Nitrogen removal in constructed wetland systems[J]. Engineering in Life Sciences, 2009, 9(1): 11-22. doi: 10.1002/elsc.200800049 [19] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161. [20] 蒋曌泽, 王铁宇, 张晓军, 等. 全氟化合物对水生植物的生态效应研究Ⅰ——典型城市河道全氟化合物的暴露水平及植物富集特征[J]. 生态毒理学报, 2015, 10(2): 435-444. [21] ZHANG D, ZHANG W, LIANG Y. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community[J]. Science of the Total Environment, 2019, 697: 134146. doi: 10.1016/j.scitotenv.2019.134146 [22] WEN B, LI L, LIU Y, et al. Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize[J]. Plant and Soil, 2013, 370(1-2): 345-354. doi: 10.1007/s11104-013-1637-9 [23] WANG T, YING G, SHI W, et al. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: Tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS)[J]. Environmental Science & Technology, 2020, 54(10): 6009-6020.