-
河流生态缓冲带(简称“缓冲带”)的划定是缓冲带修复和保护的重要前提。如何确定缓冲带的宽度和空间布局也一直是管理部门和学者们关注的热点。缓冲带宽度的研究方法大致可分为2类:一是通过野外现场实测与计算确定缓冲带宽度[1-2];二是通过模型和地理信息系统技术计算缓冲带宽度[3]。大量研究结果表明,随着缓冲带宽度的增加,其面源阻控的效果亦越明显。SAHU等[4]应用SWAT模型对缓冲带宽度与硝酸盐截留效率之间的关系进行研究后发现,硝酸盐入河量随着缓冲带宽度的增加而减少,且截留效率与缓冲带宽度之间呈现非线性关系。SYVERSEN[5]发现,10 m宽的缓冲带对硝酸盐的去除效率明显高于5 m宽的缓冲带,但比较单位面积的硝酸盐截留率,5 m宽缓冲带比10 m宽缓冲带的截留率更高。
VFSMOD模型(vegetative filter strips modelling)是一种模拟植被缓冲带物理过程的模型[6]。通过输入适当参数,可直接运用该模型计算一定宽度缓冲带的污染物去除效率或根据污染物削减目标确定缓冲带的宽度。基于VFSMOD模型和土壤调查来模拟并确定缓冲带的宽度,是目前被广泛认可的方法[7]。在此方法基础上,2008年9月,美国农业部(USDA)发布了保护缓冲带设计指南(Conservation Buffers)。该指南从水质、生物多样性、土壤生产力、经济机会、保护和安全、审美和效果、户外休闲等7个方面详细叙述了缓冲带的设计原则,并确定了缓冲带宽度的计算方法以及如何发挥缓冲带的脱氮除磷作用等[8-9]。我国的缓冲带划定工作起步较晚,关于山溪型缓冲带的宽度划定研究更是鲜有报道。
浦阳江是浙江省水生态治理的重点示范水体,是典型的山溪型河流。山溪型河流汇水区域多位于山地,河谷纵向坡度大,河道坡陡流急,河道滩地较开阔。因受用地限制,山溪型河流的断面一般相对狭窄,枯水季节流量小,甚至断流,汛期河流水量充足。与一般河流相比,山溪型河流具有独特的水文、形态、景观、文化等特征[10-12]。缓冲带划定时应充分结合流域地形地貌、汇水分区以及土地利用状况。山溪型缓冲带建设应该充分考虑到汛期雨量大、水位高和流速快的特点,注重防洪排涝。
本研究以浦阳江干流为例,利用VFSMOD模型,结合浦阳江流域自然和社会条件,沿干流两岸划定范围,选择试点区域构建缓冲区,旨在为山溪型河流生态缓冲带修复提供参考。
浦阳江干流生态缓冲带的划定与构建
Delineation and construction of ecological buffer zone in the mainstream of Puyang River
-
摘要: 河流生态缓冲带(简称“缓冲带”)的划定是对河流进行生态修复与保护的重要前提。如何确定缓冲带的宽度和空间布局也是管理部门和学者们关注的热点。以浙江省金华市山溪型河流浦阳江干流为例,利用GF-2卫星影像提取河流岸线、解译河岸两侧土地利用状况,通过VFSMOD模型工具和缓冲带自然条件综合确定农田型、村落型、林草型河段的缓冲带宽度;而城镇型河段则结合城市河道蓝线来确定缓冲带宽度;最终划定浦阳江干流左右岸缓冲带总长度109.63 km,总面积2.837 km2。在此基础上,构建了试点区域上仙屋断面的缓冲带修复方案,旨在为缓冲带修复和水环境质量改善提供参考。Abstract: The delineation of the riparian buffer zone is important for riparian buffer zone restoration. Determining width and spatial layout of the riparian buffer zone has attracted attention of the administrative departments and researchers. In this study, the mainstream of the Puyang Riverin Jinhua City, Zhejiang Province, was investigated as a case for delineation and construction of ecological buffer zone. GF-2 satellite imaging was used to extract riverbank lines and to interpret the land use status on both sides of the riverbank. Based on the VFSMOD model and the natural conditions of the riparian buffer zone, the width of the buffer zone of farmland type, village type, forest and grass type river sections were determined. For urban river sections, the width of the buffer zone was determined based on the blue line of the urban river. The total length of the buffer zone on the left and right banks of the mainstream of the Puyang River was 109.63 km and the total area was 2.837 km2. Given that, a detailed restoration plan for the riverbank ecological buffer zone of the Shangxianwu section in a typical area was proposed, aiming to provide reference and support for riverbank buffer restoration.
-
表 1 河流生态缓冲带宽度参照值[14]
Table 1. Reference values of river ecological buffer width
类型 坡度/% 一般河流最
小宽度/m特殊河流最
小宽度/m城镇型河段 — 城市河道蓝线 城市河道蓝线 农田型河段 1 25 45 农田型河段 3.5 30 60 农田型河段 9 35 80 农田型河段 30 70 125 村落型河段 1 20 35 村落型河段 3.5 25 45 村落型河段 9 30 60 村落型河段 30 70 120 林草型河段 — 15 15 注:城镇型河段的最小宽度按城市河道蓝线划定范围确定。 表 2 浦阳江两岸缓冲带的长度统计结果
Table 2. Results of the length of the buffer zone, green area and construction area on both sides of the Puyang River
两岸位置 缓冲带宽度/m 缓冲带长度/km 左岸 15 13.25 21 1.43 25 12.93 26 1.67 28 5.19 29 3.92 35 2.45 65 0.53 66 1.79 70 0.45 106 1.68 112 0.85 右岸 15 23.3 25 14.73 26 7.25 29 1.12 33 2.19 49 0.14 -
[1] 王敏, 吴建强, 黄沈发, 等. 不同坡度缓冲带径流污染净化效果及其最佳宽度[J]. 生态学报, 2008, 28(10): 4951-4956. doi: 10.3321/j.issn:1000-0933.2008.10.040 [2] 黄沈发, 唐浩, 鄢忠纯, 等. 3种草皮缓冲带对农田径流污染物的净化效果及其最佳宽度研究[J]. 环境污染与防治, 2009, 31(6): 53-57. doi: 10.3969/j.issn.1001-3865.2009.06.016 [3] 钱进, 王超, 王沛芳, 等. 河湖滨岸缓冲带净污机理及适宜宽度研究进展[J]. 水科学进展, 2009, 20(1): 139-144. doi: 10.3321/j.issn:1001-6791.2009.01.023 [4] SAHU M, GU R R. Modeling the effects of riparian buffer zone and contour strips on stream water quality[J]. Ecological Engineering, 2009, 35(8): 1167-1177. doi: 10.1016/j.ecoleng.2009.03.015 [5] SYVERSEN N. Effect and design of buffer zones in the Nordic climate: The influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff[J]. Ecological Engineering, 2005, 24(5): 483-490. doi: 10.1016/j.ecoleng.2005.01.016 [6] MUOZ-CARPENA R, PARSONS J E, GILLIAM J W. Modeling hydrology and sediment transport in vegetative filter strips[J]. Journal of Hydrology, 1999, 214(1/2/3/4): 111-129. [7] 侯利萍, 何萍, 钱金平, 等. 河岸缓冲带宽度确定方法研究综述[J]. 湿地科学, 2012, 10(4): 500-506. doi: 10.3969/j.issn.1672-5948.2012.04.017 [8] BENTRUP G. Conservation buffers: Design guidelines for buffers, corridors, and greenways[R/OL]. [2021-03-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=c00bd6263d0b5bd0b6daa2e2d73423b7&site=xueshu_se. [9] LYU C J, LI X J, YUAN P, et al. Nitrogen retention effect of riparian zones in agricultural areas: A meta-analysis[J]. Journal of Cleaner Production, 2021, 315(10): 128143. [10] 王沛芳, 王超. 山溪性城市河流水环境综合整治体系研究[J]. 湖泊科学, 2003, 15(Z1): 261-265. doi: 10.18307/2003.sup33 [11] 刘桂玲. 浙江省城镇近自然河道设计方法研究[D]. 杭州: 浙江农林大学, 2010. [12] 浙江省土地志编纂委员会编. 浙江省土地志[M]. 北京: 方志出版社, 2001. [13] 孙永军, 陈德智, 邱云峰. 河流湿地遥感信息提取方法研究[J]. 国土资源遥感, 2010(S1): 14-17. [14] 袁鹏, 刘瑞霞, 俞洁, 等. 《浙江省河流生态缓冲带划定与生态修复技术指南(试行)》解读[J]. 环境工程技术学报, 2021, 11(1): 1-5. doi: 10.12153/j.issn.1674-991X.20210003 [15] United States Department of Agriculture. Forest Service Southern Research Station. Conservation Buffers. Guidelines, Design[R/OL]. [2021-03-01]. 2008.https://www.srs.fs.usda.gov/. [16] CHRISTER NILSSON, KAJSA BERGGREN. Alterations of riparian ecosystems caused by river regulation[J]. BioScience, 2000, 50(9): 783-792. doi: 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 [17] 颜兵文, 彭重华, 胡希军. 河岸植被缓冲带规划及重建研究: 以长株潭湘江河岸带为例[J]. 西南林业大学学报, 2008, 28(1): 57-60. doi: 10.3969/j.issn.2095-1914.2008.01.012 [18] 中华人民共和国环境保护部污染防治司. 湖泊流域入湖河流河道生态修复技术指南(试行)[S/OL]. 2014.[2021-03-01]. https://www.mee.gov.cn/gkml/hbb/bgth/201406/W020140612431124756514.pdf.