-
对于污水生物除磷,WENTZEL等[1]于1986年提出了强化生物除磷(enhanced biological phosphorus removal, EBPR)模型,他认为污水中的挥发性脂肪酸(volatile fatty acids, VFAs)在EBPR机制中起关键作用。研究中多以富含VFAs的废水来建立EBPR[2]。通过研究,人们获得了一些共识,即聚磷菌不能摄取水中大分子有机物来进行聚磷。若进水中只含大分子有机物,就不利于生物除磷。虽然生活污水所含的污染物主要也是大分子有机化合物如蛋白质、碳水化合物和油脂[3],但在生活污水生物处理中,由于污水中存在发酵性细菌,可将部分大分子有机化合物转化为VFAs[4],然后聚磷菌才利用这些VFAs去除污水中的磷。
1987年,TRACY等[5]在以葡萄糖为碳源的废水处理系统中也实现了EBPR,该研究发现系统内聚磷菌在胞内合成糖原而不是聚羟基脂肪酸酯。此后SATOH等[6]、ZENGIN等[7]和REY-MARTÍNEZ等[8]以葡萄糖、天冬氨酸和谷氨酸等为废水碳源,也均实现了EBPR。这些在不同碳源下的生物除磷与传统的EBPR的模型有一定差别,但相应的生化机制尚未解明。张鑫等[9]和陆雨林[10]以淀粉为唯一碳源,在缺氧/好氧序批式活性污泥法(sequencing batch reactor, SBR)与连续流系统中诱导出生物除磷,在没有厌氧释磷前提下实现了磷的去除[11],他们认为这是一种新的生物除磷机制[12]。
利用该缺氧好氧工艺,可以同时去除氮和磷,可缩短污水脱氮除磷流程、降低处理投资和运行费用。但生活污水中有机物并非单一的淀粉,而是由碳水化合物(40%左右)、蛋白质(50%左右)和油脂(10%左右)构成[3]。若进水为生活污水,对于该缺氧好氧系统的脱氮除磷情况目前尚未见相关的研究报道。本研究将与生活污水成分相近的碳源如葡萄糖、蛋白胨全脂奶粉作为补充碳源,通过设置不同的混合碳源,研究以淀粉为唯一碳源的除磷系统是否能维系以及混合碳源下生物除磷情况,旨在进一步探索该生物除磷的机理、为在生活污水生物处理中建立新型缺氧好氧生物除磷提供参考。
不同碳源下缺氧/好氧连续流系统生物除磷效果及其机理
Biological phosphorus removal and its mechanism in anoxic/aerobic continuous flow system with different carbon sources
-
摘要: 为了考察前期发现的以淀粉为唯一碳源、缺氧好氧生物脱氮系统对含多种有机物的废水中磷的脱除,在以淀粉为唯一碳源、已能稳定生物除磷(除磷率达72%)的缺氧好氧连续流生物脱氮系统中,改变进水碳源组成及浓度,测定了系统对磷去除的变化、分析了系统除磷与进水碳源的关系。结果表明,在进水中淀粉浓度保持为400 mg·L−1(以COD计,下同)、添加入葡萄糖或者蛋白胨与全脂奶粉混合物使得进水的COD分别提高至500 mg·L−1和600 mg·L−1,当投加葡萄糖后,缺氧段污泥中糖原含量由282.9 mg·g−1增加至312.3 mg·g−1,而液相中乳酸量减少,最终系统除磷率降低;投加蛋白胨与全脂奶粉混合物后,缺氧段液相中乳酸量和污泥对磷的摄取量与改变前均相差不大;在淀粉量不变、增加进水COD的条件下,无论投加的是葡萄糖还是蛋白胨-奶粉混合物都不能够再提高系统的除磷能力。在保持进水总COD不变(400 mg·L−1)时,减少进水中淀粉量至300、200和100 mg·L−1,并相应增加葡萄糖或蛋白胨与全脂奶粉混合物(1∶1),随着进水淀粉浓度的降低,6种碳源对应系统的除磷率均有所降低;相对地,当进水葡萄糖100 mg·L−1、淀粉为300 mg·L−1时,系统除磷效果最高,摄磷量为2.9 mg·L−1,吸磷速率为0.95 mg·(g·h)−1。以上结果表明,该系统是依靠缺氧段对淀粉碳源发酵产生的乳酸来进行超量摄磷,但蛋白类碳源不能被发酵产乳酸,因而无助于系统除磷;在淀粉碳源充足(400 mg·L−1 COD)下,增加葡萄糖碳源,不利于除磷。而在淀粉不足时,增加葡萄糖可补充碳源有利于除磷。Abstract: To investigate the phosphate removal from wastewater containing many types of organics by anoxic/aerobic biological denitrification system with starch alone as carbon source, which was observed before, the effects of the constitution and concentration of carbon source on the performance of the continuous flow system, which achieved good phosphorus removal (efficiency of 72%)with starch alone as carbon source, were studied, as well as the change of phosphorus removal and the relationship between the carbon source and phosphorus removal. The results showed that when the concentration of starch in the influent was at 400 mg·L−1, and the COD value of the wastewater increased to 500 mg·L−1 and 600 mg·L−1 with addition of glucose or a mixture of peptone and milk powder, respectively, the glycogen content in the sludge under anoxic period increased from 282.9 mg·g−1 to 312.3 mg·g−1 with addition of glucose, while the amount of lactic acid in the bulk liquid decreased, at last the decrease in phosphorus removal rate occurred. When different mixtures of peptone and milk powder (1∶1) were added, the amount of lactic acid in the bulk liquid of anoxic period and the phosphorus removal by the sludge were almost the same as before. Under the conditions of constant starch content and increased influent COD value, the phosphate removal of the system did not increase with addition of glucose or a mixture of peptone and milk powder. Under the conditions of maintaining the total influent COD of 400 mg·L−1, reducing the amount of starch in the influent to 300, 200 and 100 mg·L−1 , respectively, and increasing glucose or a mixture of peptone and milk powder (1∶1) at the same time, the reduction of starch in influent resulted in the decrease of phosphorus removal efficiency of the system with 6 types of carbon sources. When the glucose concentration was 100 mg·L−1 and starch 300 mg·L−1, phosphorus removal efficiency of the system was the highest, phosphorus intake amount and rate were 2.9 mg·L−1 and 0.95 mg·(g·h)−1, respectively. It implies that the system relied on lactic acid produced by starch fermentation at anoxic stage to achieve excessive phosphorus uptake, while the sludge in the system did not use protein substances to ferment and produce lactic acid, which did not help to remove phosphorus. When the starch was sufficient (COD 400 mg·L−1), glucose addition was not conducive to phosphorus removal. Glucose could be used as a supplementary carbon source when the starch was insufficient.
-
表 1 总COD大于400 mg·L−1的废水配方
Table 1. Wastewater composition with total COD higher than 400 mg·L−1
mg·L−1 淀粉 葡萄糖 蛋白胨全脂奶粉 COD ${\rm{PO}}_4^{3 - }{\text{-}}{\rm{P}}$ ${\rm{NO}}_3^ - {\text{-}}{\rm{N}}$ 400 — 100 500 8 20 400 — 200 600 8 20 400 100 — 500 8 20 400 200 — 600 8 20 注:蛋白胨与全脂奶粉的配比为1∶1。 表 2 总COD为400 mg·L−1的废水配方
Table 2. Wastewater composition with total COD of 400 mg·L−1
mg·L−1 淀粉 葡萄糖 蛋白胨全脂奶粉 COD ${\rm{PO} }_4^{3 - } {\text{-}}{\rm{P}}$ ${\rm{NO}}_3^ -{\text{-}}{\rm{N}} $ 100 — 300 400 8 20 200 — 200 400 8 20 300 — 100 400 8 20 100 300 — 400 8 20 200 200 — 400 8 20 300 100 — 400 8 20 -
[1] WENTZEL M C, LÖTTER L H, LOEWENTHAL R E, et al. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal: A biochemical model[J]. Water S A, 2000, 12(4): 209-224. [2] 彭党聪, 张晓霞, 樊香妮, 等. 温度对 SBR 强化生物除磷工艺除磷性能的影响[J]. 环境工程学报, 2016, 10(11): 6106-6110. doi: 10.12030/j.cjee.201506073 [3] 谢婷, 莫创荣, 李小明, 等. 不同葡萄糖和乙酸比对强化生物除磷系统的影响[J]. 水处理技术, 2014, 40(11): 37-42. [4] 佘谱颖, 邓风, 徐华, 等. 水解酸化+水力增氧床+人工湿地组合工艺处理生活污水的试验研究[J]. 现代化工, 2018, 38(1): 118-120. [5] TRACY K D, FLAMMINO A. Biochemistry and energetics of biological phosphorus removal[C]. Proceedings of an IAWPRC Specialized Conference Held in Rome, Italy, 1987: 15-26. [6] SATOH H, MINO T, MATSUO T. Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation[J]. Water Science and Technology, 1994, 30(6): 203-211. [7] ZENGIN G E, ARTAN N, ORHON D, et al. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure[J]. Bioresource Technology, 2011, 102(2): 894-903. [8] REY-MARTÍNEZ N, BADIA-FABREGAT M, GUISASOLA A, et al. Glutamate as sole carbon source for enhanced biological phosphorus removal[J]. Science of the Total Environment, 2019, 657: 1398-1408. [9] 张鑫, 袁林江, 陈光秀, 等. SBR脱氮系统污泥对磷的去除研究[J]. 环境工程学报, 2010, 4(5): 1003-1007. [10] 陆林雨. 缺氧/好氧活性污泥生物除磷的机理研究[D]. 西安: 西安建筑科技大学, 2010. [11] 霍小爱, 袁林江, 罗大成, 等. 亚硝酸盐对乳酸发酵缺氧-好氧SBR脱氮系统除磷的影响[J]. 环境科学学报, 2019, 39(12): 3966-3972. [12] LUO D, YUAN L, LIU L, et al. Biological phosphorus removal in anoxic-aerobic sequencing batch reactor with starch as sole carbon source[J]. Water Science and Technology, 2017, 75(1): 28-38. [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] 张丽, 郭莹姿, 李志朋. 功能性微生物制剂中乳酸含量的测定方法[J]. 广东饲料, 2015, 24(7): 37-38. doi: 10.3969/j.issn.1005-8613.2015.07.011 [15] 杨翠, 彭党聪, 张新艳, 等. 有机物对蒽酮-硫酸法测定葡萄糖含量的影响[J]. 环境化学, 2014, 33(11): 1994-1998. doi: 10.7524/j.issn.0254-6108.2014.11.012 [16] 由阳, 彭永臻, 王淑莹, 等. 强化生物除磷系统胞内聚合物测定方法优化[J]. 哈尔滨工业大学学报, 2010, 42(2): 207-211. doi: 10.11918/j.issn.0367-6234.2010.02.007 [17] 杨平平, 甄玉国, 郑艳秋, 等. 优化对羟基联苯法定量测定瘤胃液中乳酸含量[J]. 畜牧与饲料科学, 2013, 34(2): 1-2. doi: 10.3969/j.issn.1672-5190.2013.02.001 [18] 薛欢婷, 袁林江, 刘小博, 等. 连续流系统中好氧段及沉淀段对污泥及其缺氧段脱氮能力的影响[J]. 环境科学, 2019, 40(8): 3675-3682. [19] JIN Y, DING D, FENG C, et al. Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater[J]. Bioresource Technology, 2012, 104: 12-18. [20] TORRESI E , TANG K, DENG J, et al. Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR[J]. Science of the Total Environment, 2019, 663: 496-506. [21] 王琰. 高效除磷酵母菌株的筛选及其磷代谢基本特性研究[D]. 济南: 济南大学, 2019. [22] 韦佳敏. ABR-MBR组合工艺反硝化除磷效能与优化研究[D]. 苏州: 苏州科技大学, 2019. [23] 罗大成. AO脱氮系统生物除磷及机理研究[D]. 西安: 西安建筑科技大学, 2018. [24] 刘胜军, 杨学, 石凤, 等. 多段多级AO除磷脱氮工艺分析与研究[J]. 给水排水, 2012, 48(S1): 191-194. [25] ALBERTSEN M, HUGENHOLTZ P, SKARSHEWSKI A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013, 31(6): 533-538.