-
脱氮是污水处理流程中一个重要的环节,强化脱氮处理能避免污水排放后形成氮素污染。在传统生物脱氮过程中,包括硝化和反硝化2个过程[1]。其中,反硝化是在缺氧条件下,以有机碳源作为电子供体用于产能和细胞合成,同时在硝酸盐还原酶(nitrate reductase, Nar)、亚硝酸盐还原酶(nitrite reductase, Nir)、一氧化氮还原酶(nitric oxide reductase, Nor)和氧化亚氮还原酶(nitrous oxide reductase, Nos)的参与下,将
${\rm{NO}}_3^ - $ -N逐步还原为N2[2]。反硝化的中间产物N2O是一种强温室气体[3]。有研究[4]指出,N2O是21世纪排放的主要臭氧消耗物质,其在大气中的浓度每增加一倍,将导致全球升温0.3 ℃[5]。因此,N2O的排放控制日益引起国家政府的重视。N2O作为反硝化过程的中间产物之一,当其还原速率小于生成速率时,即可出现N2O的积累。与其他反硝化酶相比,
${\rm{NO}}_2^ - $ -N更容易影响Nos酶的活性,从而抑制N2O的还原,导致N2O的积累[6-9]。许多研究[10-13]表明,${\rm{NO}}_2^ - $ -N是引起反硝化过程中N2O积累和释放的关键因素。为减少污水脱氮过程中N2O的释放,国内外的科研人员围绕生物脱氮过程中N2O的产生机理进行了大量研究[8, 14-17],但控制反应参数以减少N2O排放的效果还不甚良好。本研究以葡萄糖为碳源,在保证初始氮素总量一致的条件下,改变${\rm{NO}}_2^ - $ -N占氮素总量的比例,监测了反应器内${\rm{NO}}_3^ - $ -N、${\rm{NO}}_2^ - $ -N、N2O的浓度以及耗氧有机污染物的浓度(以COD计)等指标的变化,考察了不同初始条件对反硝化过程中脱氮效果的影响,探究了${\rm{NO}}_2^ - $ -N占比对反硝化的影响,进而分析其对N2O产生的影响。本研究可为控制反硝化过程中N2O的排放提供参考。
亚硝酸盐占比对反硝化及N2O释放的影响
Effect of the proportion of nitrite on denitrification and N2O release
-
摘要: 针对反硝化过程中N2O大量释放这一问题,研究了不同
${\rm{NO}}_2^ - $ -N占比对反硝化脱氮过程及N2O释放的影响。在保证初始氮素浓度总和为100 mg·L−1的条件下,改变${\rm{NO}}_2^ - $ -N所占比例进行批次实验,分别考察了反应器的脱氮速率及氮素指标变化。结果表明,随着初始${\rm{NO}}_2^ - $ -N占比的升高,反硝化脱氮效率升高。其中,${\rm{NO}}_2^ - $ -N浓度随时间基本呈先升高后降低的趋势。初始${\rm{NO}}_2^ - $ -N占比越高,${\rm{NO}}_3^ - $ -N降解速率越快,${\rm{NO}}_2^ - $ -N积累也越多。随着初始${\rm{NO}}_2^ - $ -N占比的升高,N2O的积累速率、积累最高值和转化率均逐渐增大,最高分别为18.828 mg·(g·h)−1、22.123 mg·L−1和24.05%。随着初始${\rm{NO}}_2^ - $ -N占比的升高,游离亚硝酸(free nitrous acid, FNA)浓度也随之升高,从而导致N2O产生大量积累。-
关键词:
- 亚硝酸盐 /
- 反硝化 /
- 游离亚硝酸(FNA) /
- N2O
Abstract: Aiming at the problem of large amount of N2O release during sewage treatment, the effects of different${\rm{NO}}_2^ - $ -N ratios on the denitrification process and N2O release were studied. At the total nitrogen concentration of 100 mg·L−1, the change of${\rm{NO}}_2^ - $ -N proportion was performed to conduct batch experiment. The reactor denitrification rate and nitrogen index variations were studied. The results show that the denitrification efficiency increased with the increase of the initial${\rm{NO}}_2^ - $ -N ratio, in which the${\rm{NO}}_2^ - $ -N concentration basically increased first and then decreased. The higher the initial${\rm{NO}}_2^ - $ -N ratio, the faster the degradation rate of${\rm{NO}}_3^ - $ -N and the more${\rm{NO}}_2^ - $ -N accumulation. With the increase of the initial${\rm{NO}}_2^ - $ -N ratio, the accumulation rate, maximum accumulation value and conversion rate of N2O both gradually increased. The highest values were 18.828 mg·(g·h)−1, 22.123 mg·L−1 and 24.05%, respectively. As the initial${\rm{NO}}_2^ - $ -N ratio increased, the concentration of free nitrous acid (FNA) increased, resulting in more N2O accumulation. FNA concentration may be the cause of the large N2O accumulation.-
Key words:
- nitrite /
- denitrification /
- free nitrous acid(FNA) /
- N2O
-
表 1 不同初始
${\rm{NO}}_2^ - $ -N浓度时实验的运行条件Table 1. Operational conditions at different initial
${\rm{NO}}_2^ - $ -N concentrationsmg·L−1 ${\rm{NO}}_x^ - $ -N${\rm{NO}}_2^ - $ -N${\rm{NO}}_3^ - $ -NFNA 100 0 100 0 100 5 95 0.003 9 100 10 90 0.007 7 100 20 80 0.015 4 100 40 60 0.030 8 100 100 0 0.076 9 表 2 不同初始
${\bf{NO}}_2^ - $ -N占比下反应器内N2O动力分析Table 2. Kinetic analysis of bioreactors at different initial
${\rm{NO}}_2^ -\text{-}{\rm{N}}$ concentrations初始 ${\rm{NO}}_2^ - $ -N/(mg·L−1)N2O积累峰值/(mg·L−1) N2O积累速率/(mg·(g·h)−1) N2O降解速率/(mg·(g·h)−1) N2O最大转化率/% 0 5.012 1.280 — 5.44 5 7.712 1.969 — 7.85 10 8.293 2.352 2.353 8.70 20 11.235 4.781 5.093 11.28 40 15.232 9.722 5.249 15.32 100 22.123 18.828 7.914 24.05 -
[1] 张自杰. 排水工程: 下册[M]. 4版. 北京: 中国建筑工业出版社, 2000. [2] 王淑莹, 孙洪伟, 杨庆, 等. 传统生物脱氮反硝化过程的生化机理及动力学[J]. 应用与环境生物学报, 2008, 14(5): 732-673. doi: 10.3321/j.issn:1006-687X.2008.05.029 [3] MONTZKA S A, DLUGOKENCKY E J, BUTLER J H. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476(7358): 43-50. doi: 10.1038/nature10322 [4] RAVISHANKARA A R. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-5. doi: 10.1126/science.1176985 [5] IPCC. Climate change 2007: The IPCC scientific assessment[R]. Cambridge: Cambridge University Press, 2007. [6] PARK K Y, INAMORI Y, MIZUOCHI M, et al. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration[J]. Journal of Bioscience and Bioengineering, 2000, 90(3): 247-252. doi: 10.1016/S1389-1723(00)80077-8 [7] PARK K Y, LEE J W, INAMORI Y, et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater[J]. Water Science and Technology, 2001, 43(3): 147-150. doi: 10.2166/wst.2001.0130 [8] ZHOU Y, PIJUAN M, J ZENG RAYMOND, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42(22): 8260-8265. [9] DUAN H, WANG Q, ERLER D V, et al. Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment[J]. Science of the Total Environment, 2018, 644: 360-370. doi: 10.1016/j.scitotenv.2018.06.346 [10] SCHULTHESS R V, GUJER W. Release of nitrous oxide (N2O) from denitrifying activated sludge: Verification and application of a mathematical model[J]. Water Research, 1996, 30(3): 521-530. doi: 10.1016/0043-1354(95)00204-9 [11] 付昆明, 付巢, 王会芳, 等. 亚硝酸盐对生物膜CANON工艺脱氮性能和N2O释放的影响[J]. 环境工程学报, 2018, 12(10): 2776-2782. doi: 10.12030/j.cjee.201803181 [12] 巩有奎, 任丽芳, 彭永臻. 电子竞争机制下内源反硝化过程N2O变化特性[J]. 环境科学与技术, 2019, 42(5): 168-173. [13] 委燕, 王淑莹, 马斌, 等. 亚硝酸盐对外碳源反硝化过程N2O还原的影响[J]. 中国环境科学, 2014, 34(7): 1722-1727. [14] 巩有奎, 贾文振, 彭永臻. 不同碳源反硝化过程 ${\rm{NO}}_2^ - $ 及N2O积累特性[J]. 工业水处理, 2019, 39(9): 28-32. doi: 10.11894/iwt.2018-0687[15] PAN Y, YE L, NI B, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. doi: 10.1016/j.watres.2012.06.003 [16] 张兴兴, 赵日祥, 赵剑强. 碳氮比对亚硝酸盐反硝化过程NO与N2O积累的影响研究[J]. 给水排水, 2020, 56(4): 86-91. [17] 梁雪, 赵剑强, 高坤, 等. SBBR工艺反硝化过程中N2O和NO的产生情况[J]. 化工环保, 2017, 37(6): 648-654. doi: 10.3969/j.issn.1006-1878.2017.06.009 [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] PAN Y, NI B J, BOND P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013, 47(10): 3273-3281. doi: 10.1016/j.watres.2013.02.054 [20] ALMEIDA J S, REIS M A M, CARRONDO M J T. Competition between nitrate and nitrite reduction in denitrification by pseudomonas fluorescens[J]. Biotechnology and Bioengineering, 1995, 46(5): 476-484. doi: 10.1002/bit.260460512 [21] THOMSEN J K, GEEST T, RAYMOND P C. Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by paracoccus denitrificans[J]. Applied & Environmental Microbiology, 1994, 60(2): 536-41. [22] 王少坡, 王淑莹, 彭永臻, 等. 常温内源反硝化脱氮过程中pH和ORP变化规律[J]. 环境污染治理技术与设备, 2005, 6(3): 20-24. [23] 阎宁, 金雪标, 张俊清. 甲醇与葡萄糖为碳源在反硝化过程中的比较[J]. 上海师范大学学报(自然科学版), 2002, 31(3): 41-44. [24] GABARRÓ J, GONZÁLEZ-CÁRCAMO P, RUSCALLEDA M, et al. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration[J]. Bioresource Technology, 2014, 163: 92-99. [25] WANG Q, JIANG G, YE L, et al. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor[J]. Water Research, 2014, 62: 202-210. doi: 10.1016/j.watres.2014.06.003 [26] WANG Q, YE L, JIANG G, et al. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway[J]. Water Research, 2014, 55: 245-255. doi: 10.1016/j.watres.2014.02.029 [27] ADOUANI N, LIMOUSY L, LENDORMI T, et al. N2O and NO emissions during wastewater denitrification step: Influence of temperature on the biological process[J]. Comptes Rendus Chimie, 2015, 18(1): 15-22. doi: 10.1016/j.crci.2014.11.005 [28] 付昆明, 刘凡奇, 王会芳, 等. CANON工艺中不同 ${\rm{NH}}_4^ + \text{-}{\rm{N}}$ 浓度条件下N2O释放特征[J]. 环境工程学报, 2018, 12(6): 1657-1666. doi: 10.12030/j.cjee.201712010