-
反硝化除磷菌(DPBs)具有与普通聚磷菌类似的代谢机理。在厌氧条件下DPBs利用胞内聚磷(Poly-P)及糖原(Gly)分解所获得的能量将挥发性脂肪酸(VFA)转移至体内合成PHA,宏观表现为
${\rm{PO}}_4^{3 - }$ -P浓度的升高,该阶段为释磷阶段。在缺氧条件下,DPBs利用${\rm{NO}}_x^ - $ -N代替O2作为电子受体,将厌氧合成的PHA分解,产生的能量用于吸收${\rm{PO}}_4^{3 - }$ -P并合成Poly-P存储于胞内,同时伴随着糖原的再生,即缺氧吸磷,从而实现了氮磷的同步去除[1]。目前大多数的反硝化除磷研究都是以${\rm{NO}}_3^ - $ -N作为电子受体,并且效果良好。而${\rm{NO}}_2^ - $ -N是硝化和反硝化过程的中间产物,DPBs若能以其作为电子受体则能减少碳源消耗及曝气量,并且由于其生长速率相对较慢,因此,也能减少污泥的产量。近期有研究[2-3]表明,当${\rm{NO}}_2^ - $ -N浓度较低时,DPBs能够以${\rm{NO}}_2^ - $ -N为电子受体吸磷,并且未受到抑制。而短程硝化与全程硝化相比具有节省曝气量、反应速率快等优点[4],因此,短程反硝化除磷工艺受到更多学者的关注。近年来,多数研究者采用批次实验验证了
${\rm{NO}}_2^ - $ -N作为反硝化除磷电子受体的可行性,然而,鲜有研究者考察${\rm{NO}}_2^ - $ -N对长期运行效能的影响。ABR反应器具有微生物相分离以及对底物不同阶段和程度转化的优势,可产生VFA等优质碳源,同时,MBR具有高效的生物截留作用而被日益广泛地使用。本研究采用ABR-MBR工艺,驯化DPBs对${\rm{NO}}_2^ - $ -N的耐受程度,考察了在长期运行条件下${\rm{NO}}_2^ - $ -N对反硝化吸磷的抑制程度及耐受限度,以期寻找出最佳的运行负荷,以实现碳氮磷的同步高效去除。
基质浓度对ABR-MBR短程反硝化除磷工艺效能的影响
Effect of substrate concentration on the efficiency of ABR-MBR partial denitrifying phosphorus removal process
-
摘要: 以低C/N值生活污水为处理对象,重点考察了基质浓度对厌氧折流板反应器-膜生物反应器(ABR-MBR)系统短程反硝化除磷效能的影响。结果表明:控制C/N/P值不变,逐步提高进水基质浓度,在工况A、B、C和D下所对应的ABR容积负荷(VLR,以COD计)分别为1.02、1.53、2.04和2.55 kg·(m3·d)−1;在MBR反应器中,通过游离氨(FA)选择性抑制亚硝酸盐氧化菌(NOBs),使得氨氧化菌(AOBs)逐渐成为优势菌群,亚硝酸盐积累率(NAR)稳定在61.7%;通过逐步驯化DPBs对
${\rm{NO}}_2^ - $ -N的耐受能力,以实现不同微生物的协同作用,优化系统的稳定运行。在ABR容积负荷为2.55 kg·(m3·d)−1时,游离亚硝酸(FNA)为0.001 3 mg·L−1,对DPBs产生了严重抑制作用,吸磷效果降至最低。Abstract: The effect of substrate concentration on the efficiency of partial denitrifying phosphorus removal in an anaerobic baffled reactor-membrane bioreactor (ABR-MBR) system treating low C/N domestic wastewater was investigated. Results showed that at a constant C/N/P value, the gradual increase of the substrate concentration resulted in the ABR volume loading rates (VLR) as follows: 1.02, 1.53, 2.04 and 2.55 kg·(m3·d)−1, which corresponded to the operating conditions A, B, C and D, respectively. In the MBR, free ammonia (FA) was used to selectively inhibit nitrite oxidizing bacteria (NOBs), and then ammonia oxidizing bacterias (AOBs) gradually became the dominant flora, and the nitrite accumulation rate (NAR) stably reached 61.7%. By gradually domesticating the tolerance of DPBs to${\rm{NO}}_2^ - $ -N, the synergistic effects of different microorganisms occurred and the stable running of the system was optimized. At the ABR volume load rate of 2.55 kg·(m3·d)−1, the free nitrous acid (FNA) of 0.001 3 mg·L−1 had a serious inhibitory effect on DPBs, and minimized the phosphorus absorption effect. -
表 1 实验过程及参数
Table 1. Experimental process and parameters
工况 时间/d HRT/h COD/
(mg·L−1)TN/
(mg·L−1)TP/
(mg·L−1)VLR/
(kg·(m3·d)−1)ABR MBR A 153~174 9 4.5 380 60 7.5 1.02 B 175~190 9 4.5 570 80 11 1.53 C 191~204 9 4.5 760 120 15 2.04 D 205~218 9 4.5 950 150 18 2.55 -
[1] KUBA T, MURNLEITNER E, LOOSDRECHT M C M V, et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotechnology and Bioengineering, 1996, 52(6): 685-695. doi: 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K [2] WANG Y, ZHOU S, YE L, et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research, 2014, 67: 33-45. doi: 10.1016/j.watres.2014.08.052 [3] 张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053. [4] 祝贵兵, 彭永臻, 郭建华. 短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2008, 40(10): 1552-1557. doi: 10.3321/j.issn:0367-6234.2008.10.009 [5] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [6] 孙艺齐, 卞伟, 李军, 等. 15 ℃ SBBR短程硝化快速启动和稳定运行性能[J]. 环境科学, 2019, 40(5): 1-11. [7] MULDER J W, LOOSDRECHT M C M V, HELLINGA C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11): 127-134. doi: 10.2166/wst.2001.0675 [8] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142. doi: 10.2166/wst.1998.0350 [9] 张功良, 李冬, 张肖静, 等. 低温低氨氮SBR短程硝化稳定性实验研究[J]. 中国环境科学, 2014, 34(3): 610-616. [10] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015, 35(1): 95-100. [11] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. [12] 张婷, 吴鹏, 沈耀良, 等. CSTR和MBR反应器的短程硝化快速启动[J]. 环境科学, 2017, 38(8): 3399-3405. [13] RUBIO-RINCÓN F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. doi: 10.1016/j.watres.2017.05.001 [14] RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113. doi: 10.1016/j.biortech.2016.07.092 [15] ZHANG S H, HUANG Y, HUA Y M. Denitrifying dephosphatation over nitrite: Effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010, 101(11): 3870-3875. doi: 10.1016/j.biortech.2009.12.134 [16] DUAN H, GAO S, LI X, et al. Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020, 171: 115382. doi: 10.1016/j.watres.2019.115382 [17] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025 [18] ZENG W, WANG A, ZHANG J, et al. Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “Candidatus Accumulibacter phosphatis” under free nitrous acid inhibition: Linked with detoxication[J]. Chemical Engineering Journal, 2016, 296: 234-242. doi: 10.1016/j.cej.2016.03.063 [19] ZHOU Y, GANDA L, LIM M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116: 340-347. doi: 10.1016/j.biortech.2012.03.111