-
好氧颗粒污泥是微生物在好氧条件下自凝聚形成的一种结构紧密的颗粒状活性污泥[1-2]。与传统活性污泥相比,好氧颗粒污泥具有沉降性能优良、微生物种类多样、生物量高、单级同步脱氮除磷等优点[3-5]。自1991年首次在连续流反应器中培养得到好氧颗粒污泥报道以来[6],有研究[7-8]发现,以葡萄糖或乙酸钠为单一碳培养好氧颗粒污泥存在污泥易膨胀和颗粒污泥结构松散等问题。王芳等[9]采用以葡萄糖和乙酸钠为混合碳源培养的好氧颗粒污泥表面光滑、结构紧密。培养过程中SBR调控方法的不同会导致培养结果也有差异。赵霞等[10]采用调控表面上升气速的方法培养出结构密实且表面有大量丝状菌存在的颗粒污泥;但是通过增大耗氧有机污染物浓度和表面上升气速的方式培养出的好氧颗粒污泥表面光滑且无丝状菌存在[9]。郭承元等[11]以容积负荷和沉降时间为调控参数培养出了表面凹凸不平、内部出现空洞且表面以杆菌为主的好氧颗粒污泥。以上研究在好氧颗粒污泥的培养过程中均采用调控单一条件,同时调控多因素的好氧颗粒污泥培养研究鲜有报道。
因此,本实验在SBR中,采用以葡萄糖和乙酸钠为混合碳源,通过提高进水COD值、表面上升气速,缩短污泥沉降时间的方法培养好氧颗粒污泥,研究污泥颗粒化过程中污泥特性以及污染物去除效果的变化,以期为好氧颗粒污泥培养技术提供理论依据。
混合碳源的好氧颗粒污泥培养及其除污效果分析
Cultivation of aerobic granular sludge with mixed carbon source and its decontamination effect analysis
-
摘要: 以葡萄糖和乙酸钠为混合碳源,采用调控耗氧有机污染物浓度(以COD计)、表面上升气速和污泥沉降时间的方法培养好氧颗粒污泥,对污泥颗粒化过程中的污泥特性变化和污染物去除效果进行研究。结果表明:第110 天,好氧颗粒污泥培养成功,颗粒粒径主要分布在1.43~2.26 mm,污泥容积指数(SVI30)为28 mL·g−1,沉降速度为94 m·h−1,污泥挥发组分比例(MLVSS/MLSS)为0.72。通过对胞外聚合物(EPS)含量变化分析可知,在污泥颗粒化过程中,多糖(PS)含量变化不大,基本维持在25 mg·g−1,蛋白质(PN)含量明显增加,由13.98 mg·g−1增加到41.86 mg·g−1,说明PN对好氧颗粒污泥的形成具有重要作用。好氧颗粒污泥对COD、TN和TP的去除率分别达到95%、80%、70%,具有良好的除污效果。以上研究结果可为好氧颗粒污泥的培养提供参考。Abstract: Using glucose and sodium acetate as mixed carbon source, aerobic granular sludge was cultivated by adjusting the concentration of aerobic organic pollutants (calculated by COD), surface rising gas velocity and sludge settling time. The changes of sludge characteristics and pollutant removal effect during the sludge granulation process were studied. The results showed that the aerobic granular sludge was successfully cultivated on the 110th day, its particle size was mainly distributed in 1.43~2.26 mm, the sludge volume index (SVI30) was 28 mL·g−1, the settling speed was 94 m·h−1, and the sludge volatile component ratio (MLVSS/MLSS) was 0.72. The change of extracellular polymeric substances (EPS) content indicated that during the process of sludge granulation, the content of polysaccharides (PS) did not obviously change, which basically maintained at 25 mg·g−1, but the content of protein (PN) significantly increased from 13.98 mg·g−1 to 41.86 mg·g−1, indicating that PN played an important role in the formation of aerobic granular sludge. The removal rates of COD, TN and TP by aerobic granular sludge were 95%, 80% and 70%, respectively, which had good decontamination effect. The results of this study can provide some valuable references for aerobic granular sludge cultivation.
-
Key words:
- aerobic granular sludge /
- decontamination effect /
- characteristics /
- granulation /
- mixed carbon source
-
表 1 SBR运行参数
Table 1. Operating parameters of SBR
运行
时间/d进水/
min曝气/
min沉淀/
min排水/
min闲置/
min表面上升
气速/(cm·s−1)混合碳源
比例COD/
(mg·L−1)TN/
(mg·L−1)TP/
(mg·L−1)1~13 4 338 15 1 2 0.86 5∶3 800 50 6 14~28 4 341 12 1 2 1.25 3∶2 1 000 60 9 29~43 4 343 10 1 2 1.86 5∶3 1 200 70 12 44~57 4 345 8 1 2 2.65 11∶5 1 600 90 16 58~75 4 348 5 1 2 3.87 11∶5 1 600 90 16 76~110 4 351 2 1 2 4.64 2∶1 1 800 100 20 注:混合碳源比例是指葡萄糖和乙酸钠的质量浓度比。 表 2 好氧颗粒污泥组成元素
Table 2. Components of aerobic granular sludge
元素 质量分数/% 原子个数比/% 元素 质量分数/% 原子个数比/% C 53.3 61.6 S 0.43 0.19 O 39.85 34.58 Mg 0.19 0.11 N 1.36 1.34 Fe 0.38 0.09 Na 1.75 1.06 K 0.16 0.06 Ca 1.75 0.61 Cu 0.02 0 P 0.82 0.37 -
[1] KHAN M Z, MONDAL P K, SABIR S. Aerobic granulation for wastewater bioremediation: A review[J]. Canadian Journal of Chemical Engineering, 2013, 91(6): 1045-1058. doi: 10.1002/cjce.21729 [2] 王昌稳, 李军, 赵白航, 等. 好氧颗粒污泥的快速培养与污泥特性分析[J]. 中南大学学报, 2013, 44(6): 2623-2628. [3] SEVIOUR T, DONOSE B C, PIJUAN M, et al. Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules[J]. Environmental Science & Technology, 2010, 44(12): 4729-4734. [4] KONG Q, NGO H H, SHU L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279(1): 511-517. [5] PRONK M, BASSIN J P, DE KREUK M K, et al. Evaluating the main and side effects of high salinity on aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1339-1348. doi: 10.1007/s00253-013-4912-z [6] MISHMA K, NAKAMURA M. Self-immobilization of aerobic activated sludge: A pilot of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science and Technology, 1991, 23(4): 981-990. [7] TAY S T L, MOY B Y P, MASZENAN A M, et al. Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation[J]. Applied Microbiology Biotechnology, 2005, 67(5): 708-713. doi: 10.1007/s00253-004-1858-1 [8] LIU Y, LIU Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances, 2006, 24(1): 115-127. doi: 10.1016/j.biotechadv.2005.08.001 [9] 王芳, 于汉英, 张兴文, 等. 好氧颗粒污泥稳定性影响因素分析[J]. 环境科学与技术, 2006, 29(1): 47-49. doi: 10.3969/j.issn.1003-6504.2006.01.020 [10] 赵霞, 赵阳丽, 陈忠林, 等. 好氧颗粒污泥发生丝状菌发生污泥碰撞的防空措施[J]. 中国给水排水, 2012, 28(3): 15-19. doi: 10.3969/j.issn.1000-4602.2012.03.004 [11] 郭承元, 操家顺, 王耀增. 混合碳源的好氧颗粒污泥培养及微生物特性研究[J]. 中国给水排水, 2012, 28(21): 75-78. doi: 10.3969/j.issn.1000-4602.2012.21.022 [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [13] LAGUNG A, OUATTARA A, GONZALEZ R O, et al. A simple and low cost technique for determining the granulometry of up flow anaerobic sludge blanket reactor sludge[J]. Water Science and Technology, 1999, 40(8): 1-8. doi: 10.2166/wst.1999.0371 [14] 王硕. 低温好氧颗粒污泥形成过程及其特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [15] 张云霞, 季民, 李超, 等. 好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J]. 环境科学, 2008, 29(11): 3124-3127. doi: 10.3321/j.issn:0250-3301.2008.11.023 [16] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances[J]. Analytical Chemistry, 1956, 28(5): 250-256. [17] WALKER J M. The bicinchoninic acid (BCA) assay for protein quantitation[J]. Methods in Molecular Biology, 1994, 32(1): 5-8. [18] 刘绍根, 梅子鲲, 谢文明, 等. 处理城市污水的好氧颗粒污泥培养及形成过程[J]. 环境科学研究, 2010, 23(7): 918-923. [19] HULSHOFF P L W, DE CASTRO L S I, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004, 38(6): 1376-1389. doi: 10.1016/j.watres.2003.12.002 [20] 刘凤阁, 王志平, 周江亚, 等. 真菌对好氧颗粒污泥稳定性的影响[J]. 环境科学与技术, 2009, 32(5): 5-9. doi: 10.3969/j.issn.1003-6504.2009.05.002 [21] DURMAZ B, SANIN F D. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge[J]. Water Science & Technology, 2001, 44(10): 221-229. [22] CHEN M Y, LEE D J, TAY J H, et al. Staining of extracellular polymeric substances and cells in bioaggregates[J]. Applied Microbiology and Biotechnology, 2007, 75(2): 467-474. doi: 10.1007/s00253-006-0816-5 [23] 张鹏, 周琪, 屈计宁, 等. 同时硝化与反硝化研究进展[J]. 重庆环境科学, 2001, 23(6): 20-24. [24] 杨殿海, 王峰, 夏四清. 废水处理工艺中同步硝化反硝化研究进展[J]. 上海环境科学, 2003, 22(12): 878-882. [25] DE KREUK M K, HEIJNEN J J, VAN LOOSDRECHT M C M. Simultaneous COD, nitrogen, and osphate removal by aerobic granular sludge[J]. Biotechnology and Bioengineering, 2005, 90(6): 761-769. doi: 10.1002/bit.20470 [26] 王佳伟, 高永青, 孙丽欣, 等. 中试SBR内好氧颗粒污泥培养和微生物群落变化[J]. 中国给水排水, 2019, 35(7): 1-7. [27] 冷璐, 信欣, 鲁航, 等. 同步硝化反硝化耦合除磷工艺的快速启动及其运行特征[J]. 环境科学, 2015, 36(11): 4180-4188. [28] 王晓艳, 买文宁, 唐启. 好氧颗粒污泥的培养及其对污染物去除特性研究[J]. 环境污染与防治, 2019, 41(9): 1064-1069.