-
磷回收是未来城镇污水处理厂提升经济和环境双重效益的重要途径。目前,从污水中进行磷回收的方法主要有磷酸铵镁结晶法(MAP)、羟基磷酸钙结晶法(HAP)、铝盐和铁盐沉淀以及以离子交换法为代表的新方法[1]。其中,HAP结晶法具有易分离、生成物溶度积小、对进水氮磷比要求低等优点,因而对城镇污水的磷回收有更强的适用性,尤其适用于从污泥浓缩池上清液(磷酸盐浓度12.98~160 mg·L−1)、强化生物除磷系统的厌氧上清液(磷酸盐浓度17.5~28.2 mg·L−1)等富磷溶液中回收磷[2-3]。以往研究大量集中在HAP结晶过程中操作参数的影响,例如结晶体系的pH、钙磷摩尔比(n(Ca)/n(P))、晶种投加量、曝气强度等[4-6],而对城镇污水中不容忽视的重金属离子的影响则鲜有探讨。
城镇污水中的重金属杂质广泛来源于地表径流、工业废水和生活污水,包括Zn、Al、Cd、Cr、Cu、Fe、Mn、Ni、Pb等,其浓度在几微克每升到几千微克每升的范围内波动[7]。Cu、Cd、Zn是污水中常见的生态风险较大的重金属。杨妍妍等[8]研究发现,北京的8家污水厂在2011—2017年的Cu、Cd、Zn含量均值(每千克脱水污泥)分别高达115、1.21和677 mg,属于重污染级别。这些重金属离子易被活性污泥富集,又会于厌氧释磷过程中再次被释放,难以避免地随富磷上清液进入结晶工艺[9]。众所周知,重金属对生物体具有持久危害性、毒性与累积放大性,即使是微量的重金属进入结晶产品也可能对环境造成二次污染。因此,重金属对HAP结晶过程和产品的影响是关乎生产效益与产品安全的现实问题。
根据现有研究结果[10-11],在磷酸铵镁和透钙磷石结晶体系中,重金属离子不能稳定存在于液相,极有可能参与晶核形成,进而会影响产品的纯度。但在HAP结晶体系中,围绕重金属展开的研究仍然较少。因此,本研究着重研究了在适宜的操作参数下,单独和联合投加Cu2+、Cd2+、Zn2+对HAP结晶法回收磷的影响特征,同时考察了重金属离子自身的浓度变化情况,并结合Visual MINTEQ模型验证相关规律。
典型重金属离子对羟基磷酸钙结晶法回收污水中磷的影响
Effect of typical heavy metal ions on phosphorus recovery from wastewater by crystallization of hydroxyapatite
-
摘要: 采用羟基磷酸钙(HAP)结晶法回收模拟城镇污水处理厂富磷上清液中的磷,探究了3种典型重金属离子(Cu2+、Cd2+、Zn2+)对HAP结晶体系的单独及联合影响,并结合Visual MINTEQ (Ver3.2)模拟软件进行了分析。结果表明,单一投加Cu2+/Cd2+/Zn2+均会抑制磷的去除,其中Zn2+对磷去除率的抑制最强,符合Monod抑制模型方程,抑制常数为178.0 mg·L−1;HAP结晶体系可协同去除重金属,去除率排序为Cu2+>Cd2+>Zn2+;联合投加Cu2+、Cd2+、Zn2+会增强对磷去除率的抑制作用,削弱单一重金属的去除效果。SEM结果显示,Cu2+、Cd2+、Zn2+的引入使产物表面变得疏松,但3种重金属对产物形貌的影响程度相当。Visual MINTEQ模拟结果证实Cu2+、Cd2+、Zn2+会争夺HAP的构晶离子,从而抑制磷的去除,并形成重金属杂质沉淀,杂质含量排序为Cu2+>Cd2+>Zn2+。以上研究结果可为HAP结晶法在城镇污水磷回收中的实际应用提供参考。
-
关键词:
- 重金属 /
- HAP /
- 城镇污水 /
- 磷回收 /
- Visual MINTEQ
Abstract: The single and combined effects of three heavy metal ions (Cu2+, Cd2+, Zn2+) on phosphorus recovery from the simulated phosphorus-rich supernatant in municipal wastewater plant by crystallization of hydroxyapatite (HAP) were investigated. And Visual MINTEQ (Ver3.2) was applied for auxiliary analysis. The results indicated that Cu2+, Cd2+ or Zn2+ could inhibit HAP crystallization for phosphorus removal, and Zn2+ showed the strongest inhibition effect which fitted Monod inhibition model equation with the inhibition constant of 178.0 mg·L−1. The HAP crystallization system could synergistical remove heavy metals, and the order of the removal rate was Cu2+>Cd2+>Zn2+. Joint addition of Cu2+, Cd2+ and Zn2+ could strengthen the inhibition of phosphorus removal and weaken the removal effect of single heavy metal ion. SEM observation showed that the dosing of Cu2+, Cd2+ and Zn2+ led to the loose surface of the products, while they had similar impacts on the morphology of the products. The simulation results of Visual MINTEQ confirmed that Cu2+, Cd2+ and Zn2+ inhibited phosphorus removal by grabbing crystal ions of HAP and formed precipitate with heavy metal impurity, and the order of the impurity content was Cu2+>Cd2+>Zn2+. These results can provide reference for the practical application of HAP crystallization method in phosphorus recovery in urban sewage.-
Key words:
- heavy metal /
- HAP /
- urban sewage /
- phosphorus recovery /
- Visual MINTEQ
-
表 1 结晶体系含Cu2+时主要的过饱和物质及相应的Is值
Table 1. Major supersaturated substances and their saturation indexes in the crystal system containing Cu2+
过饱和物质 不同Cu2+初始浓度下的Is值 0 5 mg·L−1 10 mg·L−1 15 mg·L−1 20 mg·L−1 25 mg·L−1 HAP 16.874 16.868 16.859 16.849 16.839 16.829 Ca3(PO4)2(beta)* 5.769 5.764 5.758 5.752 5.746 5.739 Ca4H(PO4)3·3H2O 5.158 5.149 5.141 5.132 5.123 5.114 Cu(OH)2 — 2.025 2.141 2.205 2.250 2.284 Cu2(OH)3NO3 — 0.562 1.093 1.397 1.611 1.775 Cu3(PO4)2 — 2.889 3.230 3.421 3.552 3.653 Cu2(OH)3Cl — 3.575 3.805 3.934 4.022 4.090 CuO (c)* — 3.640 3.756 3.820 3.865 3.899 注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。 表 2 结晶体系含Cd2+时主要的过饱和物质及相应的Is值
Table 2. Major supersaturated substances and their saturation indexes in the crystal system containing Cd2+
过饱和物质 不同Cd2+初始浓度下的Is值 0 5 mg·L−1 10 mg·L−1 15 mg·L−1 20 mg·L−1 25 mg·L−1 HAP 16.874 16.844 16.814 16.784 16.511 16.726 Ca3(PO4)2(beta)* 5.769 5.748 5.728 5.707 5.573 5.667 Ca4H(PO4)3·3H2O 5.158 5.126 5.094 5.063 4.934 5.000 Cd3(PO4)2 — 4.294 5.184 5.699 6.208 6.339 Cd(OH)2 — — — — — 0.153 注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。 表 3 结晶体系含Zn2+时主要的过饱和物质及相应的Is值
Table 3. Major supersaturated substances and their saturation indexes in the crystal system containing Zn2+
过饱和物质 不同Zn2+初始浓度下的Is值 0 5 mg·L−1 10 mg·L−1 15 mg·L−1 20 mg·L−1 25 mg·L−1 HAP 16.874 16.814 16.771 16.722 16.703 16.676 Ca3(PO4)2 (beta) * 5.769 5.741 5.720 5.697 5.686 5.672 Ca4H(PO4)3·3H2O 5.158 5.134 5.114 5.093 5.080 5.064 ZnO — 1.215 1.513 1.685 1.809 1.905 Zn(OH)2 (epsilon) * — 0.943 1.242 1.414 1.538 1.634 Zn3(PO4)2·4H2O — 5.267 6.211 6.785 7.166 7.473 Zn5(OH)8Cl2 — 1.749 3.309 4.243 4.910 5.438 注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。 表 4 联合投加Cu2+、Cd2+、Zn2+各25 mg·L−1时所有的过饱和物质及相应的Is值
Table 4. All supersaturated substances and their saturation indexes with joint addition of 25 mg·L−1 Cu2+, Cd2+ and Zn2+
过饱和物质 Is值 过饱和物质 Is值 Cu2(OH)3Cl 4.168 HAP 16.478 Ca3(PO4)2 (am1) * 1.678 CuO(am) * 3.007 Ca3(PO4)2 (am2) * 4.449 CuO(c) * 3.857 Ca3(PO4)2 (beta) * 5.540 ZnO 1.905 Ca4H(PO4)3·3H2O 4.868 Zn(OH)2 (am) * 0.673 CaHPO4 0.140 Zn(OH)2 (beta) * 1.400 Cd3(PO4)2 6.177 Zn(OH)2 (delta) * 1.559 Cd(OH)2 0.026 Zn(OH)2 (epsilon) * 1.634 Cu(OH)2 2.242 Zn(OH)2 (gamma) * 1.424 Cu2(OH)3NO3 1.939 Zn2(OH)3Cl 0.071 Cu3(PO4)2 3.640 Zn3(PO4)2·4H2O 7.346 Cu3(PO4)2·3H2O 1.910 Zn5(OH)8Cl2 5.427 注:*表示该物质为同质多晶体,括号内的内容代表同质多晶体的晶型;—表示该物质处于不饱和状态。 表 5 联合投加Cu2+、Cd2+、Zn2+各25 mg·L−1时主要元素在液相和固相中的分布
Table 5. Distribution of main elements in liquid and solid phases with joint addition of 25 mg·L−1 Cu2+, Cd2+ and Zn2+
组分 液相浓度/(mol·L-1) 溶解态/% 固相浓度/(mol·L-1) 沉淀/% Ca2+ 6.659×10−4 51.560 6.256×10−4 48.440 ${\rm{PO}}_4^{3 - }$ 6.869×10−5 10.639 5.770×10−4 89.361 Cu2+ 2.636×10−5 6.700 3.670×10−4 93.300 Cd2+ 2.224×10−4 100.000 0 0.000 Zn2+ 7.979×10−4 20.877 3.024×10−4 79.123 -
[1] 赵玉鑫, 杨静, 张军军, 等. 污水中磷回收方法研究进展[J]. 吉林农业大学学报, 2015, 37(6): 638-642. [2] 李吉玉, 刘安平, 毛先勇, 等. 污泥浓缩池中磷的释放及其强化去除措施[J]. 中国给水排水, 2019, 35(13): 1-5. [3] 代洪亮, 吕锡武, 高琪娜. 基于诱导HAP结晶的强化生物除磷工艺厌氧上清液中磷的回收[J]. 东南大学学报(自然科学版), 2016, 46(5): 1020-1026. doi: 10.3969/j.issn.1001-0505.2016.05.021 [4] 王琳杰, 余辉. HAP结晶法回收生活污水中磷的主要影响因素分析[J]. 环境工程, 2015, 33(12): 5-9. [5] 谷彩霞, 张超杰, 李咏梅, 等. 牛骨粉为晶种的磷酸钙结晶法回收污泥发酵液中磷[J]. 环境工程学报, 2015, 9(7): 3127-3133. doi: 10.12030/j.cjee.20150709 [6] PENG L H, LU X W, DAI H L, et al. A comprehensive review of phosphorus recovery from wastewater by crystallization processes[J]. Chemosphere, 2018, 197: 768-781. [7] USTUM G E. Occurrence and removal of metals in urban wastewater treatment plants[J]. Journal of Hazardous Materials, 2009, 172(2/3): 833-838. [8] 杨妍妍, 李金香, 刘亚平, 等. 北京城市污水处理厂污泥中重金属污染状况及潜在生态风险分析[J]. 环境污染与防治, 2019, 41(9): 1098-1102. [9] 陶飞飞, 田晴, 李方, 等. 共存杂质对磷酸铵镁结晶法回收磷的影响研究[J]. 环境工程学报, 2011, 5(11): 2437-2441. [10] 唐平. 重金属在废水MAP磷回收过程中的迁移行为研究进展[J]. 安徽农业科学, 2017, 45(7): 50-52. doi: 10.3969/j.issn.0517-6611.2017.07.020 [11] MADSEN H E L. Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4, 2H2O) and its transformation to octacalcium phosphate and apatite[J]. Journal of Crystal Growth, 2008, 310(10): 2602-2612. [12] ZHOU Z, HU D L, REN W C, et al. Effect of humic substances on phosphorus removal by struvite precipitation[J]. Chemosphere, 2015, 141: 94-99. [13] WANG J, SONG Y, YUAN P, et al. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery[J]. Chemosphere, 2006, 65(7): 1182-1187. [14] MURYANTO S, BAYUSENO A P. Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite[J]. Powder Technology, 2014, 253: 602-607. [15] DAI H L, TAN X W, ZHU H, et al. Effects of commonly occurring metal ions on hydroxyapatite crystallization for phosphorus recovery from wastewater[J]. Water, 2008, 10(11): 1619-1630. [16] MATSUNAGA K, MURATA H, MIZOGUCHI T, et al. Mechanism of incorporation of zinc into hydroxyapatite[J]. Acta Biomaterialia, 2010, 6(6): 2289-2293. [17] 李超, 朱宗强, 曹爽, 等. 桉树遗态结构HAP/C复合材料对水中Cu(Ⅱ)的吸附特征[J]. 环境科学, 2017, 38(3): 1074-1083. [18] CUDENNEC Y, LECERF A. The transformation of Cu(OH)2 into CuO, revisited[J]. Solid State Sciences, 2003, 5(11/12): 1471-1474. [19] ROSADO-MENDOZA M, OLIVA A I, et al. Preferential regions of growth of chemical bath deposited ZnO and Zn(OH)2 thin films at room conditions[J]. Thin Solid Films, 2018, 645: 231-240.