-
浸没式膜生物反应器(submerged membrane bioreactor,SMBR)在食品、皮革或矿山等高浓度氨氮废水处理中有较广泛的应用,但高浓度盐分及钙离子带来的工艺问题仍未得到有效解决[1]。高盐环境使细胞发生质壁分离、抑制细胞活性,进而降低生物硝化-反硝化能力[2];高钙废水中钙离子沉积会改变膜运行特征,导致膜污染加剧,从而影响SMBR运行稳定性[3]。
现有研究结果表明,进水预处理、通过稀释降低进水高盐量、接种嗜盐微生物和改变水力停留时间(hydraulic retention time,HRT)等方法可缓解盐对硝化-反硝化主要功能微生物的抑制作用[4],其中,HRT是影响氨氮和总氮去除率的重要因素之一[5]。LIU等[6]和EL-FADEL等[7]分别利用SMBR处理垃圾渗滤液,进水
${\rm{NH}}_4^ + $ -N浓度为2 200.02~3 035.00 mg·L−1,当HRT由4.17 d延长至7.00 d时,出水浓度由1 630.81 mg·L−1降至20.00 mg·L−1以下,去除率由37.70%增加至99.10%,随着HRT延长,${\rm{NH}}_4^ + $ -N处理能力得到显著提升。NUANSAWAN等[8]利用前置反硝化膜生物反应器处理垃圾渗滤液,平均进水TN浓度为3 391.70 mg·L−1,当HRT由2.50 d延长至5.00 d时,出水TN浓度由735.99 mg·L−1降低至461.27 mg·L−1,平均TN去除率由78.30%增加至86.40%,结果表明,延长HRT增加了硝化-反硝化时间,提高了氨氮和总氮的处理能力。高浓度钙离子沉积会增大滤饼层阻力,导致膜的无机污染,针对该问题,目前常采用的方法有进水预处理、更换膜材料、化学清洗和调整运行/间歇时间等[9],其中,调整运行/间歇时间为最典型的膜污染控制方法[10]。HABIB等[11]研究运行与间歇时间之比对膜污染特征的影响,当运行与间歇时间之比分别为32∶1、24∶1和16∶1(运行/间歇时间分别为960 s/30 s、720 s/30 s和480 s/30 s)时,平均膜污染速率分别为60.00、50.00和2.63 kPa·h−1,膜运行时长分别为0.42、0.50和9.50 h,膜污染速率随着运行与间歇时间比值的减小而减小,缩短两者比例有助于控制膜污染。TABRAIZ等[12]在运行与间歇时间的比例保持不变(10∶1)条件下,研究不同运行周期对膜污染特征的影响,运行/间歇时间分别为15 min/1.5 min、10 min/1 min和5 min/0.5 min时,膜污染速率逐渐减慢,由1.64、1.45 kPa·h−1降低至1.34 kPa·h−1,膜运行时长由21.50、25.00 h延长至27.00 h。上述结果表明,当运行时间与间歇时间之比一定时,缩短运行周期能有效控制膜污染。但在含盐量和钙离子均较高的选矿废水处理方面,通过改变膜的运行与间歇时间之比及运行周期等工艺参数,实现膜污染控制的相关研究较少。
本研究利用SMBR处理高盐高钙选矿废水,研究了水温对脱氮特征(硝化特征、总氮去除特征)的影响,通过调整HRT,实现高盐废水在不同水温条件下的高效脱氮;考察了高钙废水中膜运行与间歇时间之比和运行周期对膜污染特征的影响,并确定出膜稳定运行的最佳工艺条件,以期为SMBR在高盐高钙选矿废水中应用提供技术支持。
浸没式MBR在高盐高钙选矿废水深度处理中应用工艺优化
Operational conditions optimization for tertiary treatment of salt and calcium enriched mineral processing wastewater using submerged MBR
-
摘要: 为实现高盐高钙选矿废水高效脱氮并探明浸没式膜生物反应器(submerged membrane bioreactor,SMBR)在选矿废水深度脱氮中应用的工艺条件,研究了水力停留时间(hydraulic retention time,HRT)和水温对硝化-反硝化特征的影响,运行与间歇时间之比和运行周期对膜污染特征和机理的影响,根据出水水质及其稳定性、膜污染周期和SMBR运行稳定性确定最佳工艺条件。结果表明:在水温高于15 ℃及HRT分别为1.25、2.34、2.50和4.50 d的条件下,进水
${\rm{NH}}_4^ + $ -N浓度为(593.15±134.23) mg·L−1(平均值±标准差),平均去除率分别为95.90%、81.30%、98.38%和99.91%;进水TN浓度为(688.39±163.97) mg·L−1,平均去除率分别为85.84%、56.97%、54.46%和87.93%。SMBR脱氮良好,且随着HRT的延长,脱氮效率提高,运行稳定性增加,最佳HRT为4.50 d。根据不同水温条件下的硝化-反硝化特征,确定硝化速率和反硝化速率的温度修正系数分别为1.05和1.03;20 ℃和9 ℃(最不利水温)的硝化速率分别为0.022 9 kg·(kg·d)−1和0.012 9 kg·(kg·d)−1,反硝化速率分别为0.090 7 kg·(kg·d)−1和0.064 2 kg·(kg·d)−1。为确保最不利水温条件下的硝化-反硝化效果,HRT应不小于5.40 d。当最不利水温持续时间较短时,HRT宜采用4.50 d,并通过延长污泥龄的方法保证脱氮效果。在运行周期固定为12 min、运行与间歇时间之比分别为5∶1和2∶1的条件下,膜运行时长分别为6.70 d和11.14 d,缩短运行与间歇时间的比例有利于延长膜运行时长;在运行与间歇时间之比固定为2∶1,运行周期分别为12 min和6 min的条件下,膜运行时长分别为11.14 d和65.42 d,缩短运行周期有助于控制膜污染;根据膜污染特征与运行时长,确定最佳运行/间歇时间为4 min/2 min。以上结果表明了SMBR处理高盐高钙选矿废水的最佳工艺条件,可为SMBR在实践工程应用中提供理论依据。Abstract: To achieve the aim of efficient nitrogen removal from salt and calcium enriched mineral processing wastewater and explore the operational conditions for tertiary nitrogen removal by submerged membrane bioreactor (SMBR), the effects of hydraulic retention time (HRT) and water temperature on the characteristics of nitrification-denitrification were studied, and the effects of the ratio of operation to intermittent time and the operation period on the characteristics and mechanism of membrane fouling were also investigated. The optimum operational conditions were determined by the effluent quality and stability, membrane fouling cycle and operation stability. Results showed that when the water temperature was above 15 ℃ and HRT was 1.25, 2.34, 2.50 and 4.50 d, respectively, the influent${\rm{NH}}_4^ + $ -N concentration was (593.15±134.23) mg·L−1, the corresponding average removal efficiencies were 95.90%, 81.30%, 98.38% and 99.91%, respectively. The influent TN concentration was (688.39±163.97) mg·L−1, the corresponding average removal efficiencies were 85.84%, 56.97%, 54.46% and 87.93%, respectively. SMBR had an excellent nitrogen removal performance. The nitrogen removal efficiency and operation stability increased with the increase of HRT, and the optimal HRT was 4.50 d. According to the nitrification-denitrification characteristics at different water temperature, the temperature correction coefficient for nitrification-denitrification rates were 1.05 and 1.03, respectively. At 20 ℃ and 9 ℃ (the lowest water temperature), the nitrification rates were 0.022 9 kg·(kg·d)−1and 0.012 9 kg·(kg·d)−1, the denitrification rates were 0.090 7 kg·(kg·d)−1 and 0.064 2 kg·(kg·d)−1, respectively. To ensure the nitrification-denitrification ability under the most unfavorable water temperature (the lowest water temperature, 9 ℃), HRT should not be less than 5.40 d. When the duration of the most unfavorable water temperature was short, HRT should be 4.50 d, and the nitrogen removal effect could be ensured by prolonging sludge retention time. At the operation period of 12 min and the operation time to intermittent time ratio were 5∶1 and 2∶1, the duration of membrane operation were 6.70 d and 11.14 d, respectively. It is effective in prolonging the operation duration with decreasing the ratio of operation time to intermittent time. At the operation time to intermittent time ratio was 2∶1 and the operation period of 12 min and 6 min, the duration of membrane operation were 11.14 d and 65.42 d, respectively. It is beneficial to control membrane fouling when reducing the operation period. According to the characteristics of membrane fouling and operation duration, the optimal operation/intermittent time was 4 min/2 min. This research shows the optimal operational conditions of the treatment of salt and calcium enriched mineral processing wastewater, and provides an important basis on the application of the process in practical engineering. -
表 1 不同水力停留时间条件下活性污泥及污泥龄特征
Table 1. Characteristics of activated sludge and SRT under different HRT
HRT/d MLSS/(mg·L−1) MLVSS/(mg·L−1) MLVSS/MLSS SRT/d 1.25 10 012±843 7 225±795 0.72±0.02 30 2.34 8 355±1 123 5 861±986 0.70±0.03 46 2.50 7 912±1 146 4 937±338 0.69±0.06 46 4.50 8 315±1 390 5 852±1 300 0.70±0.04 72 表 2 原水水质
Table 2. Raw water quality
统计值 浓度/(mg·L−1) 水温/℃ TCOD SCOD ${\rm{NH}}_4^ + {\text{-N}}$ ${\rm{NO}}_2^ - {\text{-N}}$ ${\rm{NO}}_3^ - {\text{-N}}$ 总溶解性固体 Ca2+ 实测数值 53.63~271.60 58.14~234.50 381.36~907.59 0.01~81.33 16.48~265.16 11 057.00~14 321.00 480.00~550.00 9.00~34.60 平均值±标准差 128.32±92.35 96.52±88.31 573.18±142.58 5.51±20.61 89.73±70.71 12 565.59±899.02 515.90±29.05 23.93±6.19 表 3 不同HRT条件下出水氮的构成占比
Table 3. Proportion of effluent nitrogen at different HRTs
HRT/d ${\rm{NH}}_4^ + $ -N占比/%${\rm{NO}}_2^ - $ -N占比/%${\rm{NO}}_3^ - $ -N占比/%1.25 28.67 1.89 69.44 2.34 34.08 13.40 52.52 2.50 10.58 4.66 84.76 4.50 0.32 0.71 98.97 -
[1] 王德美, 王晓昌, 唐嘉陵. 不同回流比和SRT对A/O-MBR脱氮除磷的影响[J]. 工业水处理, 2016, 36(1): 55-58. doi: 10.11894/1005-829x.2016.36(1).055 [2] TAN S, CUI C, CHEN X, et al. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments[J]. Bioresource Technology, 2017, 224: 285-291. doi: 10.1016/j.biortech.2016.10.066 [3] 王辉, 丁安, 成小翔, 等. 钙离子浓度对超滤天然有机物膜污染的影响[J]. 中国给水排水, 2017, 33(15): 41-45. [4] ZHU W, GAN L, JUN L, et al. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading[J]. Bioresource Technology, 2016, 216: 714-721. doi: 10.1016/j.biortech.2016.05.123 [5] LIU J, ZHANG P, LI H, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116. doi: 10.1016/j.biortech.2017.11.026 [6] LIU J, TIAN Z, ZHANG P, et al. Influence of reflux ratio on two-stage anoxic/oxic with MBR for leachate treatment: Performance and microbial community structure[J]. Bioresource Technology, 2018, 256: 69-76. doi: 10.1016/j.biortech.2018.01.146 [7] EL-FADEL M, SLEEM F, HASHISHO J, et al. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate[J]. Waste Management, 2017, 73: 165-180. [8] NUANSAWAN N, BOONNORAT J, CHIEMCHAISRI W, et al. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate[J]. Bioresource Technology, 2016, 210: 35-42. doi: 10.1016/j.biortech.2016.01.109 [9] CHUA C, ARNOT T C, HOWELL J A. Controlling fouling in membrane bioreactors operated with a variable throughput[J]. Desalination, 2002, 149(1): 225-229. [10] WU J, LE-CLECH P, STUETZ R M, et al. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor[J]. Journal of Membrane Science, 2008, 324(1): 26-32. [11] HABIB R, ASIF M B, IFTEKHAR S, et al. Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment[J]. Chemosphere, 2017, 181: 19-25. doi: 10.1016/j.chemosphere.2017.04.048 [12] TABRAIZ S, HAYDAR S, SALLIS P, et al. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux[J]. Water Science & Technology, 2017, 76(3): 963-975. [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] CHIEMCHAISRI C, CHIEMCHAISRI W, NINDEE P, et al. Treatment performance and microbial characteristics in two-stage membrane bioreactor applied to partially stabilized leachate[J]. Water Science & Technology, 2011, 64(5): 1064-1072. [15] PUSZCZAłO E, BOHDZIEWICZ J, ŚWIERZYNSKA A. The influence of percentage share of municipal landfill leachates in a mixture with synthetic wastewater on the effectiveness of a treatment process with use of membrane bioreactor[J]. Desalination & Water Treatment, 2010, 14(1): 16-20. [16] 刘睿, 高艳梅, 王晓慧, 等. 水力停留时间对MFC-A2/O工艺处理生活污水的影响[J]. 环境科学学报, 2017, 37(2): 680-685. [17] RONALD R N, TOMOYUKI H, YUYA S, et al. High susceptibility of aerobic microbiota in membrane bioreactor (MBR) sludge towards olive oil as revealed by high-throughput sequencing of 16S rRNA genes[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 146-153. [18] RAJESH B J, UAN D K, YEOM I. Nutrient removal in an A2/O-MBR reactor with sludge reduction[J]. Bioresource Technology, 2009, 100(16): 3820-3824. doi: 10.1016/j.biortech.2008.12.054 [19] KAEWMANEE A, CHIEMCHAISRI W, CHIEMCHAISRI C, et al. Treatment performance and membrane fouling characteristics of inclined-tube anoxic/aerobic membrane bioreactor applied to municipal solid waste leachate[J]. Desalination & Water Treatment, 2016, 57(60): 201-221. [20] HASAR H, UNSAL S A, IPEK U, et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate[J]. Journal of Hazardous Materials, 2009, 171(1): 309-317. [21] SVOJITKA J, WINTGENS T, MELIN T. Treatment of landfill leachate in a bench scale MBR[J]. Desalination & Water Treatment, 2009, 9(1): 136-141. [22] 顾升波, 李振川, 李艺, 等. A/O-MBBR组合工艺和A/O工艺处理市政污水的影响因素研究[J]. 给水排水, 2017, 53(2): 49-55. doi: 10.3969/j.issn.1002-8471.2017.02.011 [23] 高湘, 王智峰, 董宏宇, 等. A2/O生物接触氧化工艺处理屠宰加工废水[J]. 环境工程学报, 2015, 9(8): 3865-3870. doi: 10.12030/j.cjee.20150845 [24] MA J, WANG Z, YANG Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J]. Water Research, 2013, 47(2): 859-869. doi: 10.1016/j.watres.2012.11.013 [25] 王巧蕊, 程星星, 范宇睿, 等. 一株丛毛单胞菌对2-吡啶甲酸的好氧生物降解[J]. 西安交通大学学报, 2018, 52(3): 168-174. [26] CARRERA J, BAEZA J A, VICENT T, et al. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system[J]. Water Research, 2003, 37(17): 4211-4221. doi: 10.1016/S0043-1354(03)00338-5 [27] SARIOGLU M, SAYI-UCAR N, COKGOR E, et al. Dynamic modeling of nutrient removal by a MBR operated at elevated temperatures[J]. Water Research, 2017, 123(15): 420-428. [28] 计根良, 郑宏林, 周勇, 等. MBR系统运行条件对膜污染影响研究[J]. 水处理技术, 2014, 40(6): 90-92. [29] 程国玲, 梁乾伟, 李永峰, 等. 优化运行条件对MBR处理效率及膜污染影响的研究[J]. 水处理技术, 2016, 42(4): 96-98. [30] KIM I S, JANG N. The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR)[J]. Water Research, 2006, 40(14): 2750-2764. [31] ZHOU L, YE B, XIA S. Assessing membrane biofouling and its gel layer of anoxic/oxic membrane bioreactor for megacity municipal wastewater treatment during plum rain season in Yangtze River Delta, China[J]. Water Research, 2017, 127(15): 22-31. [32] ARABI S, NAKHLA G. Impact of calcium on the membrane fouling in membrane bioreactors[J]. Journal of Membrane Science, 2008, 314(1): 134-142. [33] ARTIGA P, GARCIA-TORIELLP G, MENDEZ R, et al. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory[J]. Desalination, 2008, 221(1): 518-525. [34] 靖大为, 贾丽媛. 反渗透系统膜通量均衡工艺[J]. 水处理技术, 2005, 12(1): 11-15. doi: 10.3969/j.issn.1000-3770.2005.01.003 [35] MAQBOOL T, KHAN S J, LEE C H. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor[J]. Bioresource Technology, 2014, 172: 391-395. doi: 10.1016/j.biortech.2014.09.064