-
农村生活污水作为面源污染的主要来源,具有氮磷营养素较高、分散、面广、量少、不易收集、管理水平低等特点[1-2],是导致河流、湖泊富营养化的重要原因[3-4]。因此,为提高农村生活污水处理率、研究开发投资成本低、工艺设备操作简单、低能高效、运行维护方便且适用于农村污水处理设备具有重要意义。
近年来,生物膜法凭借剩余污泥量少、抗冲击负荷能力强、运行管理方便等特点,已在水处理中被大量运用[5-6],生物滤池利用生物膜的过滤、絮凝及生物氧化作用,能够有效地去除水中引起水体富营养化的氮磷元素[7]。多级生物滤池通过设置两级及以上独立的缺氧、好氧段来进行污水处理,具有抗冲击负荷能力强、充分利用原水碳源、较好地有机物降解和脱氮等能力[8-9]。填料作为生物滤池重要的组成部分,其结构、空隙率和亲水性等属性对生物膜的生长、结构和更新均具有显著影响[10-12]。相比于其他填料,聚氨酯填料(海绵)具有寿命长、损耗低(年损耗5%)、不易堵塞、氧利用率高等优点,其独特的多孔结构可使微生物在流动状态下自动聚集于载体内部,形成三维固定化生物膜,避免了流体剪切力对微生物冲刷剥离的影响,在其外表面实现亚硝化反应,在内部实现亚硝酸盐的反硝化,不仅有简单的物理吸附,还有正、负电荷的引力。此外,聚氨酯海绵填料市售价格为860~1 200元·m−3,价格低廉,故其在水处理中受到了重视,但也存在着生物亲和性不足等缺点[13-19]。为此,本研究将改性后的海绵作为填料,构建了4级斜板生物填料滤池,并对该处理系统的硝化液回流比参数进行了考察,采用高通量测序技术分析处理池中生物膜微生物生长分布情况,为该污水处理系统的达标稳定运行提供理论依据。本研究可为实际工程中工艺结构及参数的选取提供参考,有着重要的现实意义。
4级串联式斜板生物滤池对农村生活污水的处理
Treatment of rural sewage with 4-stage tandem inclined plate biological filter
-
摘要: 以4级串联式斜板生物滤池为农村生活污水处理的主体处理设备,考察了在处理过程中不同硝化液回流比对处理效果的影响,同时为深入了解这一生物处理过程,对A-(A/O)1-(A/O)2-(A/O)3这一处理系统进行了微观分析。结果表明,当最佳硝化液回流比为100%时,污染物去除率最高,此时COD、NH3-N、TN、TP和SS的出水浓度优于浙江省地方标准《农村生活污水处理设施水污染物排放标准》(DB 33/973-2015)一级标准。对该处理系统不同处理池微生物组成和功能进行了分析,结果表明,池内微生物种类丰富,以变形菌门和拟杆菌门为主,包括硝化菌、反硝化菌及聚磷菌,各生物膜样品细菌组成具有相似性,但更大程度上表现出差异性,各处理池在污水处理中发挥着不同的功能和作用。此外,该系统操作简便、无辅助药剂添加,运行成本主要来自曝气泵和硝化液回流泵的电耗费用,这说明其具有良好的应用价值。Abstract: The 4-stage tandem inclined plate biological filter was used as the main equipment treating rural domestic sewage. The effect of the nitrification liquid reflux ratios on the treatment effect was studied. Then the microscopic analysis of the A-(A/O)1-(A/O)2-(A/O)3 treatment system was conducted to deeply learn this biological treatment process. The results show that at the optimal nitrate reflux ratio of 100%, the highest pollutant removal rate occurred, the effluent concentrations of COD, NH3-N, TN, TP and SS were better than the first-level standard of the Zhejiang province local standard Water Discharge Standards for Rural Domestic Wastewater Treatment Facilities (DB 33/973-2015). The microbal composition and function analysis in the different treatment tanks show that there were rich microorganisms in the tank, they mainly were Proteobacteria and Bacteroides, including Nitrifying bacteria, Denitrifying bacteria and Phosphorus accumulating bacteria. The bacterial composition of each biofilm sample was similar, but shows greater differences, which indicates that different treatment tanks play different functions and roles in wastewater treatment. In addition, this system was simple to operate without auxiliary chemicals, simultaneously, the operating cost mainly originated from the electricity consumption cost of the aeration pump and nitrification liquid reflux pump, which indicates it has a good application value.
-
表 1 进/出水水质
Table 1. Water quality of inlet/outlet
mg·L−1 进出水浓度及标准 COD 氨氮 TP SS 进水设计浓度 250~350 33~40 3.2~3.8 60~100 出水浓度标准 ≤60 ≤15 ≤2 ≤20 表 2 样品多样性及丰度指数统计
Table 2. Sample diversity and abundance index statistics
样本名称 OTU ACE Chao1 Shannon Simpson 覆盖率/% A 4 369 41 920.70 22 856.80 5.21 0.02 95 (A/O)1 2 945 72 636.75 27 675.05 2.63 0.25 96 (A/O)2 2 765 27 145.44 13 244.00 4.22 0.07 96 (A/O)3 4 983 55 977.55 26 508.83 5.50 0.02 95 表 3 脱氮除磷功能菌及其丰度
Table 3. Nitrogen and phosphorus removal bacteria and their abundances
% 功能菌 A (A/O)1 (A/O)2 (A/O)3 Nitrospira(硝化) 0 0 0.02 0.44 Nitrobacter(硝化) 0 0 0 0.04 Nitrosomonas(硝化) 0 0 0.01 0.03 Nitrosospira(硝化) 0 0 0 0.01 Rosebaccilus(反硝化) 0.03 0 0.97 0.59 Pseudomonas(反硝化、聚磷) 0.25 0.15 0.04 0.08 Halothiobaccilus(反硝化) 0.3 0.01 0 0.01 Thiopseudomonas(反硝化、聚磷) 0.01 0 0.03 0.22 Cloacibaccilus(反硝化) 0.17 0 0.01 0 Acetanaerobacterium(反硝化) 0.15 0 0 0 Anaerobacterium(反硝化) 0.1 0 0 0 Thiobaccilus(反硝化) 0.01 0 0.01 0.01 Baccilus(反硝化) 0 0 0 0.01 Acinetobacter(聚磷) 0.43 6.91 1.3 0.55 -
[1] 曹新富, 李美存. 我国农村水污染治理的困境及出路[J]. 江西农业学报, 2017, 29(2): 133-136. [2] 刘宁, 陈小光, 崔彦召, 等. 化学除磷工艺研究进展[J]. 化工进展, 2012, 31(7): 1597-1603. [3] 黄翔峰, 闻岳, 何少林, 等. 高效藻类塘对农村生活污水的处理及氮的迁移转化[J]. 环境科学, 2008, 29(8): 2219-2226. doi: 10.3321/j.issn:0250-3301.2008.08.023 [4] MALTAIS-LANDRY G, MARANGER R, BRISSON J, et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water Research, 2009, 43(2): 535-545. doi: 10.1016/j.watres.2008.10.040 [5] YANG D, ZHANG X, ZHOU Y, et al. The principle and method of wastewater treatment in biofilm technology[J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(9): 2630-2638. doi: 10.1166/jctn.2015.4154 [6] KARADAG D, KOEROGLU O E, OZKAYA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater[J]. Process Biochemistry, 2015, 50(2): 262-271. doi: 10.1016/j.procbio.2014.11.005 [7] 朱加乐, 林燕, 王欣泽, 等. 曝气生物滤池脱氮的研究进展[J]. 化工进展, 2017, 36(3): 1077-1083. [8] YUAN L M, ZHANG C Y, XU J Y, et al. Performance of an innovative step-feed An-M(A/O)-MBR process for nutrients removal[J]. Desalination & Water Treatment, 2015, 55(10): 2728-2733. [9] WANG H, WANG J, ZHANG L, et al. Study on biological nitrogen removal in a combined A/O biofilm reactor[C]//2009 International Conference on Energy and Environment Technology. IEEE Computer Society, 2009. [10] 王娟婷, 刘振亮, 于衍真. 硅基沸石滤料A/O生物滤池挂膜启动的研究[J]. 中国资源综合利用, 2014, 32(3): 27-29. doi: 10.3969/j.issn.1008-9500.2014.03.018 [11] HASSARD F, BIDDLE J, CARTMELL E, et al. Rotating biological contactors for wastewater treatment: A review[J]. Process Safety and Environmental Protection, 2015, 94: 285-306. doi: 10.1016/j.psep.2014.07.003 [12] RAVA E, CHIRWA E. Effect of carrier fill ratio on biofilm properties and performance of a hybrid fixed-film bioreactor treating coal gasification wastewater for the removal of COD, phenols and ammonia-nitrogen[J]. Water Science and Technology, 2016, 73(10): 2461-2467. doi: 10.2166/wst.2016.108 [13] CHAE K J, KIM S M, PARK H D, et al. Development of pseudo-amphoteric sponge media using polyalkylene oxide–modified polydimethylsiloxane (PDMS) for rapid start-up of wastewater treatment plant[J]. Chemosphere, 2008, 71(5): 961-968. doi: 10.1016/j.chemosphere.2007.11.058 [14] GUO W, NGO H H, DHARMAWAN F, et al. Roles of polyurethane foam in aerobic moving and fixed bed bioreactors[J]. Bioresource Technology, 2010, 101(5): 1435-1439. doi: 10.1016/j.biortech.2009.05.062 [15] LIN Y H. Modeling the performance of biodegradation of textile wastewater using polyurethane foam sponge cube as a supporting medium[J]. Water Science & Technology, 2010, 62(12): 2801. [16] CHU L, WANG J, QUAN F, et al. Modification of polyurethane foam carriers and application in a moving bed biofilm reactor[J]. Process Biochemistry, 2014, 49(11): 1979-1982. doi: 10.1016/j.procbio.2014.07.018 [17] ONODERA T, OKUBO T, UENURA S, et al. Long-term performance evaluation of down-flow hanging sponge reactor regarding nitrification in a full-scale experiment in india[J]. Bioresource Technology, 2016, 204: 177-184. doi: 10.1016/j.biortech.2016.01.005 [18] ONODERA T, TAKAYAMA D, OHASHI A, et al. Evaluation of the resilience of a full-scale down-flow hanging sponge reactor to long-term outages at a sewage treatment plant in India[J]. Journal of Environmental Management, 2016, 181: 832-837. doi: 10.1016/j.jenvman.2016.06.058 [19] SANCHEZ G, JAYAWARDANA L, LOPEZ V, et al. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter[J]. Bioresource Technology, 2015, 187: 314-325. doi: 10.1016/j.biortech.2015.03.140 [20] 耿佳, 冯芳, 孔丹, 等. 壳聚糖改性聚氨酯载体处理高氨氮废水的研究[J]. 材料导报, 2013, 27(2): 116-120. doi: 10.3969/j.issn.1005-023X.2013.02.031 [21] ZHU J, DENG J, CHENG S, et al. A facile method for grafting polymerisation of acrylonitrile onto LDPE film with high grafting efficiency[J]. Macromolecular Chemistry & Physics, 2006, 207(1): 75-80. [22] CHEN Y, LAN S, WANG L, et al. A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017, 174: 173-182. [23] 张小玲, 李强, 王靖楠, 等. 曝气生物滤池技术研究进展及其工艺改良[J]. 化工进展, 2015, 34(7): 2023-2030. [24] WEI Y J, WU Y, YAN Y Z, et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from china[J]. Pubmed, 2018, 13(3): e0193097. [25] 黄菲, 梅晓洁, 王志伟, 等. 冬季低温下MBR与CAS工艺运行及微生物群落特征[J]. 环境科学, 2014, 35(3): 1002-1008. [26] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. doi: 10.1128/AEM.01541-09 [27] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. doi: 10.1128/AEM.00062-07 [28] DOONAN C J, MORRIS W, FURUKAWA H, et al. Isoreticular metalation of metal-organic frameworks[J]. Journal of the American Chemical Society, 2009, 131(27): 9492-9493. doi: 10.1021/ja903251e [29] VAIOPOULOU E, AIVASIDIS A. A modified UCT method for biological nutrient removal: Configuration and performance[J]. Chemosphere, 2008, 72(7): 1062-1068. doi: 10.1016/j.chemosphere.2008.04.044 [30] 李思强, 张雷, 姜安玺. 改良倒置A2/O工艺处理低温生活污水技术[J]. 化工进展, 2009, 28(11): 2068-2071. [31] GE S, ZHU Y, LU C, et al. Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process[J]. Bioresource Technology, 2012, 120(3): 305-313. [32] MA J, WANG Z, YANG Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J]. Water Research, 2013, 47(2): 859-869. doi: 10.1016/j.watres.2012.11.013 [33] SHU D, HE Y, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196: 621-633. doi: 10.1016/j.biortech.2015.07.107 [34] 陈露蕊, 杜诗云, 谢丽. pH对高温厌氧耗氢产甲烷及微生物群落的影响[J]. 化工进展, 2019, 38(8): 3816-3822. [35] WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and mrine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264-8271. doi: 10.1128/AEM.01821-12 [36] BELL T, NEWMAN J A, SILVERMAN B W, et al. The contribution of species richness and composition to bacterial services[J]. Nature, 2005, 436(7054): 1157-1160. doi: 10.1038/nature03891 [37] CHIU S Y, KAO C Y, CHEN T Y, et al. Cultivation of microalgal chlorella for biomass and lipid production using wastewater as nutrient resource[J]. Bioresource Technology, 2015, 184: 179-189. doi: 10.1016/j.biortech.2014.11.080 [38] THU N H T, QUY L V, ANNA H A, et al. High diversity and abundance of putative polyphosphate-accumulating tetrasphaera-related bacteria in activated sludge systems[J]. FEMS Microbiology Ecology, 2011, 76(2): 256-267. doi: 10.1111/j.1574-6941.2011.01049.x [39] 张为艳, 刘鹏程, 郑凤娟, 等. 有机化工废水COD高效降解菌的分离筛选及应用[J]. 工业水处理, 2016, 36(8): 52-54. doi: 10.11894/1005-829x.2016.36(8).052 [40] WAGNER M, LOY A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 2002, 13(3): 218-227. doi: 10.1016/S0958-1669(02)00315-4 [41] LIU J, TIAN Z, ZHANG P, et al. Influence of reflux ratio on two-stage anoxic/oxic with MBR for leachate treatment: Performance and microbial community structure[J]. Bioresource Technology, 2018, 256: 69-76. doi: 10.1016/j.biortech.2018.01.146 [42] ZAFIRI C, KORNAROS M, LYBERATOS G. Kinetic modelling of biological phosphorus removal with a pure culture of acinetobacter sp. under aerobic, anaerobic and transient operating conditions[J]. Water Research, 1999, 33(12): 2769-2788. doi: 10.1016/S0043-1354(98)00522-3