-
近年来,锑的污染问题日益严重,许多工业过程(如半导体、阻燃剂、合金、催化剂、化工产品等)的生产会向环境中大量的引入锑[1-2],矿山尾矿也是锑污染的主要来源地之一。我国拥有丰富的锑资源,大规模开采的同时也遗留下来大量的废弃尾矿,尾矿中的Sb与Sb化合物随着雨水,地表水浸出,使得矿山排水中含有高浓度的Sb,并通过不断的迁移转化或累积对周围环境和生物造成严重的危害[3]。因此,如何有效地处理含Sb废水一直以来都是各领域所关注的难题。
Sb在水体中常以Sb(Ⅲ)和Sb(Ⅴ)形式存在,其可在不同的pH条件下表现出不同的存在形式[4]。与常规重金属离子不同,Sb在高pH的条件下有着较高的迁移率[5],这一特性使Sb很难通过传统的方法(投加石灰石、白云石)被有效去除。为了解决这一问题,研究人员提出了许多处理锑污染的方法,包括混凝沉淀法[6-7]、膜分离法[8]、微生物法[9]、电化学法[10-11]、离子交换法[12]、吸附法[13-14]等。但是这些方法仍存在操作复杂、工艺成本高、处理浓度低等缺点,无法很好地兼顾对去除效果和二次污染的控制,难以在含锑酸性矿山废水处理中得到广泛推广与应用。据报道[11],Sb(Ⅲ)的毒性的比Sb(Ⅴ)高出10倍以上,因此,将Sb(Ⅲ)转化为Sb(Ⅴ)是实现Sb(Ⅲ)污染控制的一个可行的途径。曹岛等[15]通过H2O2对铜电解液中的Sb(Ⅲ)进行氧化,脱除率可达到68.2%。KONG等[16-17]对黄铁矿(FeS2)在自然酸性环境下发生Fenton反应并有效氧化水体中Sb(Ⅲ)进行了一系列的机理分析与研究。LIU等[11]以FeOCl改性碳纳米管(CNT)滤波器作为功能性阴极,通过流动式电芬顿体系高效地处理300 mL浓度为1 000 μg·L−1的含锑废水,取得了较好的效果。这些研究为我们处理此类废水提供新的方向:通过强氧化性物质(·OH),将Sb(Ⅲ)高效地转化为稳定的高价态,从而降低水体中的毒性,这已成为一种治理酸性矿山废水中Sb(Ⅲ)可行的办法。
本研究设计了一种新型的电芬顿反应器,以酸性矿山废水中的Sb(Ⅲ)为处理目标,考察了各关键参数对去除率的影响,系统地评价了该反应器较传统处理技术的优越性,探讨了其反应机理,并对该反应器在实际废水处理中的应用效果进行了评估,本研究可为含Sb(Ⅲ)酸性矿山废水的处理提供新的解决思路与依据。
新型电芬顿反应器处理酸性矿山废水中的Sb(Ⅲ)
Sb (Ⅲ) treatment in acid mine wastewater by a novel electro-Fenton reactor
-
摘要: 为了高效地去除酸性矿山废水中的Sb(Ⅲ),采用一种基于电芬顿反应的新型反应器进行处理。探讨了新型反应器各项性能(去除率、能耗、·OH产量)的优势;分别考察了电流强度、pH、板间距、曝气速率、电解质浓度对Sb(Ⅲ)去除效果的影响;使用水杨酸和苯醌对电芬顿体系中Sb(Ⅲ)的去除机理进行了分析;并探究新型电芬顿反应器对实际废水中的Sb(Ⅲ)处理效果。结果表明:与吸附、电氧化、传统电芬顿法相比,新型反应器在Sb(Ⅲ)的处理中更加高效,并且能耗更低,通过阴极旋转能够提高·OH的产量,增强电芬顿反应氧化能力;在电流强度为120 mA,pH为3,板间距为2 cm,曝气速率为90 mL·min−1,电解质浓度为100 mg·L−1的最佳反应条件下,Sb(Ⅲ)废水去除率接近100%;在电芬顿反应体系中,·OH和HO2·能够共同促进Sb(Ⅲ)的去除;通过该反应器处理实际废水,Sb(Ⅲ)去除率能够达到89%。以上结果可为新型电芬顿反应器高效处理含Sb(Ⅲ)的酸性矿山废水提供参考。Abstract: In order to remove Sb(Ⅲ) from acid mine wastewater efficiently, a novel reactor based on electro-Fenton reaction was used to treat acid mine wastewater. The advantages of various performances (removal rate, energy consumption, and ·OH output) of the new reactor were discussed. The effects of current intensity, pH, plate spacing, aeration rate, and electrolyte concentration on the removal rate of Sb(Ⅲ) were investigated. The removal mechanism of Sb(Ⅲ) in the electro-Fenton system was analyzed by using salicylic acid and benzoquinone. The Sb(Ⅲ) treatment in actual wastewater by the novel electro-Fenton reactor was also explored. The results showed that compared with absorption, electro-oxidation, and traditional electro-Fenton method, the novel reactor presented higher efficiency and lower cost in Sb(Ⅲ) treatment. The cathode rotation could increase the output of ·OH and enhance the oxidation capacity of the electro-Fenton system. Under the optimal conditions as follows: current intensity of 120 mA, pH 3, plate spacing of 2 cm, aeration rate of 90 mL·min−1, electrolyte concentration of 100 mg·L−1, the Sb(Ⅲ) removal efficiency from wastewater could approach 100%. ·OH and HO2· could promote Sb(Ⅲ) removal together in the electro-Fenton system. The Sb(Ⅲ) removal efficiency in actual wastewater could reach 89% by the novel reactor. The above results can provide references for the efficient treatment of Sb(Ⅲ)-containing acid mine wastewater by the novel electro-Fenton reactor.
-
Key words:
- Sb(Ⅲ) /
- acid mine wastewater /
- electro-Fenton /
- novel reactor /
- removal mechanism
-
-
[1] ZHANG G, OUYANG X, LI H, et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115: 148-155. [2] HARGREAVES A J, VALE P, WHELAN J, et al. Mercury and antimony in wastewater: Fate and treatment[J]. Water, Air & Soil Pollution, 2016, 227: 89. [3] MUBARAK H, CHAI L Y, MIRZA N, et al. Antimony (Sb) pollution and removal techniques: Critical assessment of technologies[J]. Toxicological & Environmental Chemistry, 2015, 97(10): 1296-1318. [4] VERBINNEN B, BLOCK C, LIEVENS P, et al. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite[J]. Waste and Biomass Valorization, 2013, 4(3): 635-645. doi: 10.1007/s12649-013-9200-8 [5] ASHLEY P M, CRAW D, GRAHAM B P, et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand[J]. Journal of Geochemical Exploration, 2003, 77(1): 1-14. doi: 10.1016/S0375-6742(02)00251-0 [6] GUO W, FU Z, WANG H, et al. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644: 1277-1285. doi: 10.1016/j.scitotenv.2018.07.034 [7] DU X, QU F, LIANG H, et al. Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process[J]. Chemical Engineering Journal, 2014, 254: 293-301. doi: 10.1016/j.cej.2014.05.126 [8] SAITO T, TSUNEDA S, HIRATA A, et al. Removal of antimony (III) using polyol-ligand-containing porous hollow-fiber membranes[J]. Separation Science and Technology, 2004, 39(13): 3011-3022. doi: 10.1081/SS-200033727 [9] TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony (Ⅲ) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environment Microbiology, 2015, 81(24): 8478-8488. doi: 10.1128/AEM.01970-15 [10] ZHU J, WU F, PAN X, et al. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes[J]. Journal of Environmental Sciences, 2011, 23(7): 1066-1071. doi: 10.1016/S1001-0742(10)60550-5 [11] LIU Y, ZHANG J, LIU F, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-Fenton system[J]. Chemosphere, 2019, 245: 125604. [12] MIAO Y, HAN F, PAN B, et al. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger[J]. Journal of Environmental Sciences, 2014, 26(2): 307-314. doi: 10.1016/S1001-0742(13)60418-0 [13] ZHAO X, DOU X, MOHAN D, et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247: 250-257. doi: 10.1016/j.cej.2014.02.096 [14] SHAN C, MA Z, TONG M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268: 229-236. doi: 10.1016/j.jhazmat.2014.01.020 [15] 曹岛, 肖发新, 毛建伟. 铜电解液中锑氧化还原规律及其价态转化途径[J]. 铜业工程, 2013, 121(3): 11-16. doi: 10.3969/j.issn.1009-3842.2013.03.004 [16] KONG L, HU X, HE M. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(6): 3499-3505. [17] KONG L, HE M. Mechanisms of Sb(III) photooxidation by the excitation of organic Fe(III) complexes[J]. Environmental Science & Technology, 2016, 50(13): 6974-6982. [18] 颜军, 苟小军, 邹全付, 等. 分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版), 2009, 28(2): 91-93. [19] ZHU R, YANG C, ZHOU M, et al. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor[J]. Chemical Engineering Journal, 2015, 260: 427-433. doi: 10.1016/j.cej.2014.09.029 [20] WEN S, NIU Z, ZHANG Z, et al. In-situ synthesis of 3D-GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni[J]. Journal of Hazardous Materials, 2018, 341: 128-137. doi: 10.1016/j.jhazmat.2017.07.014 [21] BRILLAS E, SIRES I, OTURAN M. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109: 6570-6631. doi: 10.1021/cr900136g [22] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-44. doi: 10.1016/j.watres.2008.10.028 [23] HE H, ZHOU Z. Electro-Fenton process for water and wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(21): 2100-2131. doi: 10.1080/10643389.2017.1405673 [24] WANG C T, CHOU W L, CHUNG M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode[J]. Desalination, 2010, 253(1/2/3): 129-134. [25] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochimica Acta, 2019, 296: 317-326. doi: 10.1016/j.electacta.2018.11.052 [26] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105 [27] AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 1-11. [28] DIEZ A M, IGLESIAS O, ROSALES E, et al. Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater[J]. Process Safety and Environmental Protection, 2016, 101: 72-79. doi: 10.1016/j.psep.2015.09.010 [29] XIA G, LU Y, XU H. Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode[J]. Electrochimica Acta, 2015, 158: 390-396. doi: 10.1016/j.electacta.2015.01.102 [30] REN G, ZHOU M, LIU M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. doi: 10.1016/j.cej.2016.04.011 [31] LING T, HUANG B, ZHAO M, et al. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES)[J]. Bioresource Technology, 2016, 203: 89-95. doi: 10.1016/j.biortech.2015.12.031 [32] SANTANA-MARTINEZ G, ROA-MORALES G, MARTIN DEL CAMPO E, et al. Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. doi: 10.1016/j.electacta.2016.02.093 [33] ZHANG H, WAN X, LI G, et al. A three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation[J]. Electrochimica Acta, 2017, 250: 42-48. doi: 10.1016/j.electacta.2017.08.040 [34] ZHAO J, ZHU C, LU J, et al. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode[J]. Electrochimica Acta, 2014, 118: 169-175. doi: 10.1016/j.electacta.2013.12.005 [35] YU X, ZHOU M, REN G, et al. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton[J]. Chemical Engineering Journal, 2015, 263: 92-100. doi: 10.1016/j.cej.2014.11.053