-
城市河道是城市景观生态系统的重要组成部分,具有提供水源、运输、防洪排涝、调节气候、降低环境污染的作用,对城市的生态环境建设和优化有着重要的意义[1-3]。随着经济技术的发展,沿海发达城市已经基本解决了河道水的黑臭问题,水环境质量也获得了阶段性的提升,但是城市河道水的总体品质并不高,尤其体现在水体感官性方面。河水的色度和透明度是人们最能够直观感受到的水质指标,因此,本研究通过尝试降低水体较高的色度,同时提高水体透明度,从而提高水体感官品质。导致河道水体感官品质不高的原因比较复杂,且与环境因素、河水的理化性质等有密切联系。河水中对感官品质有直接影响的物质主要有浮游植物及其产生的叶绿素a、悬浮固体和溶解性有机碳[4-6]。水中的基质对光线进行吸收、散射以及阻碍,或者对某一特定波段有强烈吸收光谱,从而导致本身带有一定颜色,这会导致水体色度较高或者透明度较低,进而降低感官品质[7-8]。
目前,提升水体感官品质的措施包括有物理处理法、生化生态处理法和物化处理法。物理处理方法包括引水换水和底泥疏浚等,其缺点是工程量大且费用昂贵。生化生态处理法包括人工湿地和生物滤池等物化处理法,但是此法占地大且处理速度慢。物化处理法包括混凝沉淀和加药气浮法等,其优势比较明显,但是在药剂投加和工艺流程等方面需要优化[9]。
滤布滤池是一种表层过滤技术,过滤介质(即滤布,一般由高分子纤维堆积而成)的网孔直径约为10~20 μm,其具有较高的除污精度,加之高分子纤维材质对水中有机物及SS等具有更好的黏附性能,因而能够在极小的过滤深度(1~2 cm)条件下有效地去除污水中的颗粒污染物[10]。但在实际应用中,滤布滤池存在容易堵塞、过滤阻力大、需要频繁清洗等问题,而强化混凝技术与滤布滤池相结合可以有效改善以上这些不足。本研究以苏州市姑苏区河道水为研究对象,通过现场实验,考察强化混凝-滤布滤池系统对河水水质的净化效果,重点关注浮游植物、悬浮固体和溶解性有机碳这3类物质的变化情况,上述研究结果可为沿海发达城市解决河道水感官品质不高的问题提供借鉴和参考。
强化混凝-滤布滤池提升城市河道水感官品质效果分析
Effect analysis of enhanced coagulation-cloth-media filter filter to improve the sensory quality of urban river water
-
摘要: 为提高城市河道水感官品质,研究了强化混凝沉淀与滤布滤池组合工艺对河道水的处理效果。以PAC为混凝剂,纳米四氧化三铁为助凝剂,在实验室优化条件实验的基础上,设计加工强化混凝-滤布滤池一体机,在苏州姑苏区外城河进行处理规模为2 t·h−1的现场实验,并采用多种分析仪器对进水、沉淀和混凝出水水样进行分析。结果表明,强化混凝滤布滤池一体化装置可以有效去除各项污染指标,显著改善河道水感官品质,装置对色度的平均去除率为67.7%,出水色度为10度;出水平均透明度提升10倍以上,最终出水3.1 m。通过对各个水质指标进行逐一分析并做相关性分析之后发现,影响色度和透明度的主要因素有悬浮固体、CDOM、藻类及叶绿素a,该装置对这些物质均有一定处理效果,因此,能够显著提升感官品质。本研究结果可为沿海城市提高河道水感官品质提供参考。Abstract: In order to improve the sensory quality of urban river water, the treatment effect of the combination process of coagulation sedimentation and filter cloth on river water was studied. PAC and nano-Fe3O4 were used as coagulant and coagulant aid, respectively. An integrated equipment of enhanced coagulation-cloth-media filter was designed and processed based on the experiments of conditions optimization in laboratory. Then a field test with a treatment scale of 2 t·h−1 was performed in Waichenghe, Gusu District, Suzhou and a variety of analytical instruments were used to analyze the water samples of inflow, sedimentation and coagulation effluent. The results showed that the integrated equipment of enhanced coagulation-cloth-media filter could effectively remove various indices of pollutants and significantly improve the sensory quality of river water. The average removal efficiency of the chromaticity was 67.7% by this integrated equipment, and the effluent chromaticity was 10 degrees. The average transparency of the effluent increased by more than 10 times, and was 3.1 meters for the final effluent. Through the analysis of each water quality index one by one and their correlation analysis, it was found that the main factors affecting the chroma and transparency were suspended solids, CDOM, algae and chlorophyll a. The device had a certain treatment effect of these substances, so it could significantly improve the sensory quality. This study can provide a reference for the improvement of the sensory quality of river water in coastal cities.
-
Key words:
- river water /
- cloth-media filter /
- flow cytometry /
- sensory quality
-
表 1 装置对有机碳、总氮、总磷的去除效果
Table 1. Removal effect of TOC,TN,TP by the equipment
mg·L−1 区域 TOC TP TN 进水区 7.25 0.25 2.11 沉淀区 5.53 0.13 1.93 出水区 3.84 0.07 0.94 表 2 三维荧光图谱重点指标及CDOM的去除
Table 2. Key indicators in three-dimensional fluorescence and CDOM removal
区域 荧光
指数(FI)自生源
指标(BIX)腐殖化
指数(HIX)有色溶解性
有机物相对
含量(CDOM)进水区 0.93 0.22 −0.20 4.0 沉淀区 0.85 0.22 0.022 3.2 出水区 0.88 0.17 0.73 2.8 表 3 感官品质重点指标分析
Table 3. Key indicators analysis of sensory quality
区域 色度/度 透明度/m 进水区 31±9 0.31±0.1 沉淀区 16±3 2.2±0.5 出水区 10±2 3±1 表 4 感官品质重点指标相关性分析
Table 4. Correlation analysis of key sensory quality indicators
指标 色度 浊度 叶绿素a TN TOC TP 透明度 聚球藻 微囊藻 绿藻 CDOM 色度 — 浊度 0.813* — 叶绿素a 0.895* 0.698* — TN 0.41 0.598 0.559 — TOC 0.571 0.576 0.508 0.579 — TP 0.698* 0.789* 0.619 0.238 0.338 — 透明度 −0.602* −0.899** −0.56 −0.483 −0.678 −0.724* — 聚球藻 0.597 0.667* 0.629* 0.489 0.523 0.499 −0.7* — 微囊藻 0.589 0.738* 0.689* 0.405 0.598 0.503 −0.78* 0.891* — 绿藻 0.683* 0.767* 0.723* 0.447 0.606 0.529 −0.811* 0.887* 0.901* — CDOM 0.897* 0.595 0.432 0.532 0.544 0.361 −0.631* 0.472 0.432 0.501 — 注:*表示在α=0.05水平上,呈显著相关;**表示α=0.01水平上,呈显著相关。 -
[1] 蒋宗莉, 张晓红, 郑超. 浅谈造成城市河道污染的原因及治理方案[J/OL]. 城市建设理论研究(电子版), 2015(9): 648-649. [2020-03-01]. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csjsllyj2015091038. [2] 王少言. 浅谈城市河道综合治理中存在的问题及对策研究[J/OL]. 城市建设理论研究(电子版), 2014(18): 10968-10968. [2020-03-01]. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csjsllyj2013186039 [3] 聂德彬. 关于城市河道污染源及污水治理的浅析[J/OL]. 城市建设理论研究(电子版), 2014(8). https://wenku.baidu.com/view/0c91f9a24693daef5ef73d89.html. [4] 梅玫. 基于多元统计分析的景观水体表观污染影响因素研究[D]. 苏州: 苏州科技学院, 2012. [5] 张运林, 秦伯强, 陈伟民, 等. 太湖水体透明度的分析、变化及相关分析[J]. 海洋湖沼通报, 2003(2): 32-38. [6] BACHMANN R W, HOYER M V, CANFIELD D E. Evaluation of recentlimnological changes at Lake Apopka[J]. Hydrobiologia, 2001, 448(1/2/3): 19-26. [7] 蒋鑫艳, 李畅游, 史小红等. 乌梁素海叶绿素a的时空分布及其与环境因子的关系[J]. 生态环境学报, 2019, 28(5): 964-973. [8] 杨顶田, 陈伟民, 曹文熙. 太湖梅梁湾水体透明度的影响因素分析[J]. 上海环境科学, 2003, 22(S2): 34-38. [9] 宋连朋. 混凝沉淀法处理景观水体污染水的试验研究[D]. 天津: 河北工业大学, 2012. [10] 马小杰. 滤布滤池在污水处理厂深度处理中的应用[J]. 中国市政工程, 2010, 3(3): 30-31. doi: 10.3969/j.issn.1004-4655.2010.03.011 [11] 李文, 孙力平, 谭静亮. 双氧水-活性炭工艺对污水厂二级出水色度的降解[J]. 工业水处理, 2013, 33(8): 59-62. doi: 10.3969/j.issn.1005-829X.2013.08.016 [12] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038 [13] MLADENOV N, MCKNIGHT D M, MACKO S A, et al. Chemical characterization of DOM in channels of a seasonal wetland[J]. Aquatic Sciences: Research Across Boundaries, 2007, 69(4): 456-471. doi: 10.1007/s00027-007-0905-2 [14] 卓健富, 郭卫东, 邓荀, 等. 筼筜湖CDOM的三维荧光光谱及其污染示踪研究[J]. 光谱学与光谱分析, 2010, 30(6): 101-106. [15] 何腾, 熊家晴, 王晓昌, 等. 不同再生水补水比例下景观水体的水质变化[J]. 环境工程学报, 2016, 10(12): 6923-6927. doi: 10.12030/j.cjee.201508006 [16] READ D S, BOWES M J, NEWBOLD L K, et al. Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics[J]. Environmental Science: Processes & Impacts, 2014, 16(3): 594-603. [17] MITBAVKAR S, PATIL J S, RAJANEESH K M. Picophytoplankton as tracers of environmental forcing in a tropical monsoonal bay[J]. Microbial Ecology, 2015, 70(3): 659-676. doi: 10.1007/s00248-015-0599-2