[1] ZHANG G, OUYANG X, LI H, et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115: 148-155.
[2] HARGREAVES A J, VALE P, WHELAN J, et al. Mercury and antimony in wastewater: Fate and treatment[J]. Water, Air & Soil Pollution, 2016, 227: 89.
[3] MUBARAK H, CHAI L Y, MIRZA N, et al. Antimony (Sb) pollution and removal techniques: Critical assessment of technologies[J]. Toxicological & Environmental Chemistry, 2015, 97(10): 1296-1318.
[4] VERBINNEN B, BLOCK C, LIEVENS P, et al. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite[J]. Waste and Biomass Valorization, 2013, 4(3): 635-645. doi: 10.1007/s12649-013-9200-8
[5] ASHLEY P M, CRAW D, GRAHAM B P, et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand[J]. Journal of Geochemical Exploration, 2003, 77(1): 1-14. doi: 10.1016/S0375-6742(02)00251-0
[6] GUO W, FU Z, WANG H, et al. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644: 1277-1285. doi: 10.1016/j.scitotenv.2018.07.034
[7] DU X, QU F, LIANG H, et al. Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process[J]. Chemical Engineering Journal, 2014, 254: 293-301. doi: 10.1016/j.cej.2014.05.126
[8] SAITO T, TSUNEDA S, HIRATA A, et al. Removal of antimony (III) using polyol-ligand-containing porous hollow-fiber membranes[J]. Separation Science and Technology, 2004, 39(13): 3011-3022. doi: 10.1081/SS-200033727
[9] TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony (Ⅲ) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environment Microbiology, 2015, 81(24): 8478-8488. doi: 10.1128/AEM.01970-15
[10] ZHU J, WU F, PAN X, et al. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes[J]. Journal of Environmental Sciences, 2011, 23(7): 1066-1071. doi: 10.1016/S1001-0742(10)60550-5
[11] LIU Y, ZHANG J, LIU F, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-Fenton system[J]. Chemosphere, 2019, 245: 125604.
[12] MIAO Y, HAN F, PAN B, et al. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger[J]. Journal of Environmental Sciences, 2014, 26(2): 307-314. doi: 10.1016/S1001-0742(13)60418-0
[13] ZHAO X, DOU X, MOHAN D, et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247: 250-257. doi: 10.1016/j.cej.2014.02.096
[14] SHAN C, MA Z, TONG M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268: 229-236. doi: 10.1016/j.jhazmat.2014.01.020
[15] 曹岛, 肖发新, 毛建伟. 铜电解液中锑氧化还原规律及其价态转化途径[J]. 铜业工程, 2013, 121(3): 11-16. doi: 10.3969/j.issn.1009-3842.2013.03.004
[16] KONG L, HU X, HE M. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(6): 3499-3505.
[17] KONG L, HE M. Mechanisms of Sb(III) photooxidation by the excitation of organic Fe(III) complexes[J]. Environmental Science & Technology, 2016, 50(13): 6974-6982.
[18] 颜军, 苟小军, 邹全付, 等. 分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版), 2009, 28(2): 91-93.
[19] ZHU R, YANG C, ZHOU M, et al. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor[J]. Chemical Engineering Journal, 2015, 260: 427-433. doi: 10.1016/j.cej.2014.09.029
[20] WEN S, NIU Z, ZHANG Z, et al. In-situ synthesis of 3D-GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni[J]. Journal of Hazardous Materials, 2018, 341: 128-137. doi: 10.1016/j.jhazmat.2017.07.014
[21] BRILLAS E, SIRES I, OTURAN M. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109: 6570-6631. doi: 10.1021/cr900136g
[22] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-44. doi: 10.1016/j.watres.2008.10.028
[23] HE H, ZHOU Z. Electro-Fenton process for water and wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(21): 2100-2131. doi: 10.1080/10643389.2017.1405673
[24] WANG C T, CHOU W L, CHUNG M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode[J]. Desalination, 2010, 253(1/2/3): 129-134.
[25] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochimica Acta, 2019, 296: 317-326. doi: 10.1016/j.electacta.2018.11.052
[26] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105
[27] AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 1-11.
[28] DIEZ A M, IGLESIAS O, ROSALES E, et al. Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater[J]. Process Safety and Environmental Protection, 2016, 101: 72-79. doi: 10.1016/j.psep.2015.09.010
[29] XIA G, LU Y, XU H. Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode[J]. Electrochimica Acta, 2015, 158: 390-396. doi: 10.1016/j.electacta.2015.01.102
[30] REN G, ZHOU M, LIU M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. doi: 10.1016/j.cej.2016.04.011
[31] LING T, HUANG B, ZHAO M, et al. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES)[J]. Bioresource Technology, 2016, 203: 89-95. doi: 10.1016/j.biortech.2015.12.031
[32] SANTANA-MARTINEZ G, ROA-MORALES G, MARTIN DEL CAMPO E, et al. Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. doi: 10.1016/j.electacta.2016.02.093
[33] ZHANG H, WAN X, LI G, et al. A three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation[J]. Electrochimica Acta, 2017, 250: 42-48. doi: 10.1016/j.electacta.2017.08.040
[34] ZHAO J, ZHU C, LU J, et al. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode[J]. Electrochimica Acta, 2014, 118: 169-175. doi: 10.1016/j.electacta.2013.12.005
[35] YU X, ZHOU M, REN G, et al. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton[J]. Chemical Engineering Journal, 2015, 263: 92-100. doi: 10.1016/j.cej.2014.11.053