-
榨菜废水是榨菜生产过程中的副产物,具有高盐度、高氨氮、高磷酸盐、高有机质等特点,每年排入三峡水库的榨菜废水量约为3.5×106 m3,这给三峡水库的水环境保护造成了极大的负担[1]。榨菜废水中的盐度对水生动植物具有毒害作用,进一步破坏了水体生态环境[2],因此,有必要去除榨菜废水中的盐度。传统的脱盐工艺(反渗透法、蒸馏法)不仅能耗高,而且还需要较高的水压[3]。有研究[4]表明,传统的盐水淡化技术每生产1 m3淡水,须消耗2~15 kWh电能。因此,有必要寻求经济高效的新方法。
近年来,微生物脱盐燃料电池(MDC)作为一种新型的环境友好型废水处理技术,受到了广泛的关注[5]。MDC相较于传统的脱盐技术,具有能耗更低、操作条件更简单等优点[6],同时,可以在没有外加电源的情况下,实现同步产电脱盐[7]。有研究[6]表明,高盐水中盐度的去除率和电流密度有很大关系,电流密度越大,盐度的去除率越高[8],考虑到阴极电子受体[9-11]对电池的产电性能有较大的影响,为了提高脱盐效率和产电性能,须选择合适的阴极电子受体。常见的阴极有铁氰化钾阴极、空气阴极、生物阴极等。使用铁氰化钾作为阴极电子受体时可以去除约90%的盐度,最大功率密度可以达到2 W·m−2[9],然而,空气阴极中盐度的去除率只有43%~67%,铁氰化钾阴极通常会产生比氧气更高的阴极电位,这在一定程度上会提高盐度的去除率[10]。生物阴极在长周期运行中会产生膜污染,导致电池性能下降[11]。因此,本实验选择铁氰化钾作为阴极电子受体,并以水阴极作为参考。在以往的MDC研究中,中间盐室一般均采用人工配置的NaCl溶液[12],鲜少采用实际榨菜废水。为了促进燃料电池的实际应用,须研究榨菜废水的产电脱盐性能。
本研究以榨菜废水为中间盐室进水,以铁氰化钾和氧气为阴极电子受体,构建MDC,比较其产电和脱盐性能,采用16S rRNA基因测序法对微生物群落和功能微生物菌群进行研究,为后续榨菜废水的处理提供参考。
不同阴极微生物脱盐电池处理榨菜废水性能及微生物群落分析
Performance and microbial community analysis in microbial desalination cells with different cathodes for mustard tuber wasterwater treatmment
-
摘要: 为处理高盐榨菜废水(mustard tuber wastewater treatment,MTWW),实现系统同步产电脱盐的目的,构建了以生物电化学为基础的微生物脱盐燃料电池(microbial desalination cell,MDC),探讨了铁氰化钾和水阴极MDC产电及脱盐效果,并对系统微生物群落进行了分析。结果表明:在相同脱盐时间内,铁氰化钾组盐度去除率为90.30%,略高于水阴极组;在整个脱盐周期内,铁氰化钾组产电性能优于水阴极组;随着脱盐时间的延长,铁氰化钾组产电性能略有下降,而水阴极组产电性能显著增强;铁氰化钾组阳极优势菌属为Methanosaeta(23.55%)、Geobacter(14.09%)和vadinHA17(8.64%),水阴极组阳极优势菌属为vadinHA17(18.17%)、Methanosaeta(13.00%)和Methanosaeta(9.79%),其中Geobacter为产电菌,vadinHA17为水解发酵菌,Methanosaeta和Methanosaeta为常见产甲烷菌。铁氰化钾组阳极和水阴极组阳极中产甲烷菌占比很高,然而,产甲烷菌对系统产电脱盐有不利作用,因此,有必要寻找合适的抑制产甲烷菌产生的方法。运行后期,水阴极组阴极中出现了产电菌,极大地降低了阴极过电势,提高了系统的产电性能。上述研究结果可为MTWW的资源化处理提供参考。Abstract: To realize the purpose of simultaneous electricity generation and salt removal, the microbial desalination cell (MDC) based on bioelectrochemistry was constructed for mustard tuber wastewater treatment(MTWW). In this study, the electricity generation and salt removal of potassium ferricyanide and water-cathode MDC were examined, and the microbial community in the sytem was analyzed. The results showed that within the same desalination time, the salt removal rate of the potassium ferricyanide group was 90.30%, being slightly higher than that of the water-cathode group. Over the entire desalination cycle, the electricity generation of the potassium ferricyanide group was better than that of water-cathode group. With the extension of desalinization time, the electricity generation of the potassium ferricyanide group decreased slightly, while the electricity generation of water-cathode group increased significantly. Methanosaeta(23.55%), Geobacter(14.09%)and vadinHA17(8.64%)were the dominant bacteria in anodic biofilm of the potassium ferricyanide group, while vadinHA17(18.17%), Methanosaeta(13.00%)and Methanosaeta(9.79%)were the dominant bacteria in cathodic biofilm of the water-cathode group. Of which Geobacter belongs to electrgenic bacteria, vadinHA17 belongs to hydrolyzed fermentation bacteria, Methanosaeta and Methanosaeta belong to methanogens. The abundance of methanogens in the anodic biofilm of the potassium ferricyanide group and water-cathode group was pretty high. However, the methanogens have an adverse effect on electricity generation and salt removal, therefore, it is necessary to find a suitable method for inhibiting the generation of methanogens. At the later stage of operation, the electrogenic bacteria appeared in the cathode of the water-cathode group, which greatly reduced the cathode overpotential and improved the electricity generation of the system. This study provides a reference for resuorce utilization of MTWW.
-
表 1 榨菜废水和生活污水水质
Table 1. Water qualities of mustard tube wastewater and domestic sewage
水样 pH COD/(mg·L−1) 盐度(以NaCl计)/(g·L−1) 电阻率/(mS·cm−1) ${\rm{NH}}_4^ + $ /(mg·L−1)生活污水 7.63±0.13 100±1.32 — — 32.5±1.22 榨菜废水 7.25±0.10 1 500±42 18.5±0.51 33.8±11.1 196±3.42 表 2 膜的微生物多样性
Table 2. Microbial diversity of biofilm
样本 Shannon Simpson OTU Ace Chao 覆盖率 铁氰化钾阳极膜 4.52 0.042 1 201 1 245 1 246 0.998 水阴极组阳极膜 4.66 0.024 988 1 180 1 203 0.996 水阴极组阴极膜 4.31 0.072 769 971 976 0.992 -
[1] CHAI H X, KANG W. Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater[J]. Applied Biochemistry and Biotechnology, 2012, 168(6): 1664-1671. doi: 10.1007/s12010-012-9887-1 [2] ZHANG L F, FU G K, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. doi: 10.1016/j.bioelechem.2018.11.002 [3] LUO H P, JENKINS P E, REN Z Y. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells[J]. Environmental Science Technology, 2011, 45(1): 340-344. doi: 10.1021/es1022202 [4] LUO H P, XU P, JENKINS P E. Ionic composition and transport mechanisms in microbial desalination cells[J]. Journal of Membrane Science, 2012, 409-410: 16-23. doi: 10.1016/j.memsci.2012.02.059 [5] MALAKOOTIAN M, MAHDIZADEH H, NASIRI A, et al. Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions[J]. Desalination, 2018, 438: 19-23. doi: 10.1016/j.desal.2018.03.025 [6] ZHANG L F, FU G K, ZHANG Z. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 289: 19-28. [7] YANG E, CHAE K, CHOI M, et al. Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment[J]. Desalination, 2019, 452: 40-67. doi: 10.1016/j.desal.2018.11.007 [8] RAGAB M, ELAWWAD A, ABDEL-HALIM H. Simultaneous power generation and pollutant removals using microbial desalination cell at variable operation modes[J]. Renewable Energy, 2019, 143: 939-949. doi: 10.1016/j.renene.2019.05.068 [9] CAO X X, HUANG X, LIANG P, et al. A new method for water desalination using microbial desalination cells[J]. Environmental Science & Technology, 2009, 43(18): 7148-7152. [10] MEHANNA M, SAITO T, YAN J L, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis[J]. Energy & Environmental Science, 2010, 3(8): 1114-1120. [11] ZHANG H C, WEN Q X, AN Z Y, et al. Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells[J]. Environmental Science and Pollution Research, 2016, 23(6): 5931-5940. doi: 10.1007/s11356-015-5794-7 [12] WEN Q X, ZHANG H C, CHEN Z Q, et al. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination[J]. Bioresource Technology, 2012, 125: 108-113. doi: 10.1016/j.biortech.2012.08.140 [13] 付国楷, 杨茜, 张林防, 等. 高盐废水MFCs不同阴极电子受体产电及微生物群落分析[J]. 环境工程学报, 2019, 13(10): 2451-2460. doi: 10.12030/j.cjee.201901111 [14] JADHVA D, GHADGE A, MONDAL D, et al. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells[J]. Bioresource Technology, 2014, 154: 330-335. doi: 10.1016/j.biortech.2013.12.069 [15] GHADGE A N, JADHAV D A, PRADHAN H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015, 182: 225-231. doi: 10.1016/j.biortech.2015.02.004 [16] 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4): 1401-1407. doi: 10.3969/j.issn.1000-6923.2017.04.026 [17] ZHANG L F, FU G K, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012 [18] OLIOT M, GALIER S, BALMANN H, et al. Ion transport in microbial fuel cells: Key roles, theory and critical review[J]. Applied Energy, 2016, 183: 1682-1704. doi: 10.1016/j.apenergy.2016.09.043 [19] SAMSON R, SHAH M, YADAV R, et al. Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges[J]. Science of the Total Environment, 2019, 674: 288-299. doi: 10.1016/j.scitotenv.2019.04.166 [20] CHEN X J, XU Y, FAN M, et al. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system[J]. Journal of Environmental Management, 2019, 235: 350-356. [21] SUN L W, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov. sp. nov. a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov[J]. International Journal of Systematic & Evolutionary Microbiology, 2016, 66(7): 2635-2642. [22] MENG X Y, YUAN X F, REN J W, et al. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses[J]. Bioresource Technology, 2017, 241: 1050-1059. doi: 10.1016/j.biortech.2017.05.181 [23] 李坚, 汤佳, 庄莉, 等. 导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程[J]. 生态环境学报, 2018, 27(7): 76-84. [24] LEE J, HWANG S. Single and combined inhibition of Methanosaeta concilii by ammonia, sodium ion and hydrogen sulfide[J]. Bioresource Technology, 2019, 281: 401-411. doi: 10.1016/j.biortech.2019.02.106 [25] RIMBOUND M, BARAKAT M, BERGEL A, et al. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics[J]. Bioelectrochemistry, 2017, 116: 24-32. doi: 10.1016/j.bioelechem.2017.03.001 [26] 李志杰, 郭长城, 石杰, 等. 高通量测序解析多环芳烃污染盐碱土壤翅碱蓬根际微生物群落多样性[J]. 微生物学通报, 2017, 44(7): 1602-1612.