-
苯扎氯铵(benzalkonium chlorides, BACs)主要由3种正烷烃基(n-C12H25、n-C14H29和n-C16H33)取代二甲基苄基氯化铵组成的同系物混合物[1],因其具有较强的杀菌作用,常被作为洗涤剂、纺织物软化剂、界面转化活性剂、矿物浮选剂、杀菌剂以及个人护理品中的防护和抗静电成分[2]。由于杀菌剂生产及使用量的逐年递增,BACs被美国和加拿大列为高产量化学品[3]。BACs的大量生产和消耗,将不可避免地随着时空迁移进入环境中。近年来,BACs陆续在多种环境介质中被检出,如污水处理厂进水[4-5]、医院废水[6]、洗衣店出水[6](表1)、天然水体[7-8]、污水厂污泥[9]、河口沉积物[10-11]以及土壤[12]中。其中,河水中BAC-12和BAC-14的含量分别达到2.7~5.8 μg·L−1和6.3~36.6 μg·L−1[7];地表水中BAC-12、BAC-14和BAC-16的总量达到(3.24±14)~(72.5±14) μg·L−1[8];RUAN等[9]在中国52个污水处理厂污泥中检测出BACs的含量为0.09~191 μg·g−1;LI等[10]在中国珠江口的沉积物中发现BACs的含量为49.3~1 050 ng·g−1;FERRER等[11]曾报道BAC同系物在美国的河水沉积物中的浓度为22~206 μg·kg−1。KANG等[12]在韩国土壤中检测到BACs的含量为0.001~8.5 mg·kg−1。
环境中BACs的存在对生物具有潜在的毒性风险。毒理学研究表明,BACs对哺乳动物和水生动物均有急性和慢性毒性。BACs对大鼠的半数致死量(LD50)为234~525 mg·kg−1[13-14]。MELIN等[15]发现,BACs能够干扰雌性小鼠的排卵系统和发情周期,并降低雄性小鼠的精子浓度和活动能力,从而降低小鼠的繁殖率。BACs对水生生物(如藻类、水蚤、轮虫和原生动物)均具有急性毒性,半数效应浓度(EC50)为21~2 940 μg·L−1[16-18]。在欧盟修订的(EC)No.1272/2008条例中,将BACs归类为“对水生生物毒性极大”的物质,并认为对与其共存污染物的迁移性和生物有效性具有显著影响[19]。
在水环境中发现的BACs主要来自城市污水处理厂[4]。季铵盐化合物的存在可能会引起活性污泥潜在的急性反应,影响污泥的微生物活性和生存能力,从而影响其去除污染物的能力[20-21]。迄今为止,有关BACs对活性污泥微生物活性影响的研究鲜有报道。本研究在序批式反应器(SBR)处理模拟废水的基础上,以BACs的主要成分十二烷基二甲基苄基氯化铵(dodecylbenzyldimethylammonium chloride, DDBAC)为研究对象,通过污泥的微生物活性指标、氧化还原酶活性以及DDBAC浓度变化的测定,探究在DDBAC暴露下活性污泥的急性反应及微生物活性变化,以期为评估BACs在污水处理厂中的行为及影响提供参考。
苯扎氯铵对活性污泥微生物活性的影响
Effect of benzalkonium chloride on microbial activity of activated sludge
-
摘要: 为考察苯扎氯铵(benzalkonium chlorides,BACs)对活性污泥微生物活性的影响,以BACs的主要成分十二烷基二甲基苄基氯化铵(dodecylbenzyldimethylammonium chloride, DDBAC)为研究对象,分析了DDBACs对活性污泥耗氧速率(OUR)、比氨氧化率(SAOR)、亚硝酸盐氧化率(SNOR)、硝酸盐还原率(SNRR)、TCC-脱氢酶活性、过氧化氢酶(CAT)活性的影响及活性污泥对DDBAC的降解能力,探讨了城市污水中BACs对污泥微生物活性及水生态系统的潜在影响。结果表明:DDBAC能够影响污泥的耗氧速率,抑制污泥的呼吸作用,降低TCC-脱氢酶和过氧化氢酶活性;DDBAC对硝化过程,尤其是氨氧化菌主导的氨氧化过程的抑制作用更加显著;当DDBAC浓度≥2.0 mg·L−1时,能够抑制
$ {\rm{NH}}_4^ + $ -N的转化,且浓度越高,抑制效果越明显。同时,活性污泥微生物对DDBAC具有一定的去除潜力,但处理能力有限,出水中残留的DDBAC将增加水环境健康管理负担,提高安全用水的风险。Abstract: In view of the potential impact of BACs on the microbial activity of sludge, the dodecylbenzyldimethylammonium chloride (DDBAC) was taken as the research object in this study. The influences of BBDAC with different concentrations on oxygen uptake rate (OUR), specific ammonia oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) of activated sludge, TCC-dehydrogenase activity and catalase (CAT) activity were analyzed, as well as the degradation of BBDAC by activated sludge. Besides, the potential effect of BACs in municipal sewage on the microbial activity of sludge and the water ecosystem were investigated. The results showed that DDBAC could affect the oxygen consumption rate of sludge, inhibit the respiration of sludge, and reduce the activities of TCC-dehydrogenase and catalase. In addition, DDBAC showed more significant inhibition effect on the nitrification process, especially the ammonia-oxidizing process dominated by ammonia-oxidizing bacteria. At DDBAC concentration ≥2.0 mg·L−1, the transformation of$ {\rm{NH}}_4^ + $ -N was inhibited, and the higher the concentration, the more obvious the inhibition effect. At the same time, activated sludge microorganisms had a certain potential to remove DDBAC, but the treatment capacity was limited. The residual DDBAC in effluent will increase the burden of water environmental health management and increase the risk of safe water use. -
-
[1] 丁晓静, 车宜平, 刘丽萍, 等. 反相高效液相色谱法测定复方化学消毒剂中苯扎氯铵含量的不确定度评定[J]. 化学分析计量, 2006(4): 7-9. doi: 10.3969/j.issn.1008-6145.2006.04.002 [2] TEZEL U, PAVLOSTATHIS S G. Transformation of benzalkonium chloride under nitrate reducing conditions[J]. Environmental Science & Technology, 2009, 43(5): 1342-1348. [3] U.S. Environmental Protection Agency (U.S. EPA). Effluent limitations guidelines and new source performance standards for the meat and poultry products point source category, final rule: 40 CFR Part 432[S]. U.S. Environmental Protection Agency, Washington D C, USA, 2004. [4] CLARA M, SCHARF S, SCHEFFKNECHT C, et al. Occurrence of selected surfactants in untreated and treated sewage[J]. Water Research, 2007, 41(19): 4339-4348. doi: 10.1016/j.watres.2007.06.027 [5] MARTINEZ-CARBALLO E, SITKA A, GONZALEZ-BARREIRO C, et al. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. PartⅠ. Application to surface, waste and indirect discharge water samples in Austria[J]. Environmental Pollution, 2007, 146(2): 489-496. [6] KREUZINGER N, FUERHACKER M, SCHARF S, et al. Methodological approach towards the environmental significance of uncharacterized substances: Quaternary ammonium compounds as an example[J]. Desalination, 2007, 215(1): 209-222. [7] FERRER I, FURLONG E T. Identification of alkyl dimethylbenzylamm onium surfactants in water samples by solid-phase extraction followed by ion trap LC/MS and LC/MS/MS[J]. Environmental Science & Technology, 2001, 35(12): 2583-2588. [8] OLKOWSKA E, POLKOWSKA Ż, NAMIEŚNIK J. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples[J]. Talanta, 2013, 116(22): 210-216. [9] RUAN T, SONG S J, WANG T, et al. Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China[J]. Environmental Science & Technology, 2014, 48(8): 4289-4297. [10] LI X L, LUO X J, MAI B X, et al. Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments[J]. Environmental Pollution, 2014, 185: 127-133. doi: 10.1016/j.envpol.2013.10.028 [11] FERRER I, FURLONG E T. Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples[J]. Analytical Chemistry, 2002, 74(6): 1275-1280. doi: 10.1021/ac010969l [12] KANG H I, SHIN H S. Rapid and sensitive determination of benzalkonium chloride biocide residues in soil using liquid chromatography-tandem mass spectrometry after ultrasonically assisted extraction[J]. Bulletin of the Korean Chemical Society, 2016, 37(8): 1219-1227. doi: 10.1002/bkcs.10842 [13] ALFREDSON B V, STIEFEL J R, JR F T, et al. Toxicity studies on alkyl dimethylbenzylamm onium chloride in rats and in dogs[J]. Journal of Pharmaceutical Sciences, 1951, 40(6): 263-267. [14] XUE Y Y, ZHANG S S, TANG M, et al. Comparative study on toxic effects induced by oral or intravascular administration of commonly used disinfectants and surfactants in rats[J]. Journal of Applied Toxicology, 2012, 32(7): 480-487. doi: 10.1002/jat.1662 [15] MELIN V E, MELIN T E, DESSIFY B J, et al. Quaternary ammonium disinfectants cause subfertility in mice by targeting both male and female reproductive processes[J]. Reproductive Toxicology, 2016, 59: 159-166. doi: 10.1016/j.reprotox.2015.10.006 [16] HEGSTAD K, LANGSRUD S, LUNESTAD B T, et al. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health?[J]. Microbial Drug Resistance, 2010, 16(2): 91-104. doi: 10.1089/mdr.2009.0120 [17] LAVORGNA M, RUSSO C, D'ABROSCA B, et al. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems[J]. Environmental Pollution, 2016, 210: 34-39. doi: 10.1016/j.envpol.2015.11.042 [18] ZHANG C, CUI F, ZENG G M, et al. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment[J]. Science of the Total Environment, 2015, 518-519: 352-362. [19] CARBAJO J B, PETRE A L, ROSAL R, et al. Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles[J]. Chemical Engineering Journal, 2016, 283: 740-749. doi: 10.1016/j.cej.2015.08.001 [20] WU D L, SHEN Y H, DING A Q, et al. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge[J]. Journal Hazardous Materials, 2013, 262: 649-655. doi: 10.1016/j.jhazmat.2013.09.038 [21] WAGNER M, LOY A, NOGUEIRA R, et al. Microbial community composition and function in wastewater treatment plants[J]. Antonie van Leeuwenhoek, 2002, 81(1): 665-680. [22] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [23] WANG Z C, GAO M C, SHE Z L, et al. Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor[J]. Separation & Purification Technology, 2015, 144(39): 223-231. [24] 尹军, 谭学军, 张立国, 等. 测定脱氢酶活性的萃取剂选择[J]. 中国给水排水, 2004, 20(7): 96-98. doi: 10.3321/j.issn:1000-4602.2004.07.029 [25] 杨兰芳, 曾巧, 李海波. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 2011, 42(1): 207-210. [26] TEZEL U, PIERSON J A, PAVLOSTATHIS S G. Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture[J]. Water Research, 2006, 40(19): 3660-3668. doi: 10.1016/j.watres.2006.06.019 [27] ZHANG C, TEZEL U, LI K X, et al. Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge[J]. Water Research, 2011, 45(3): 1238-1246. doi: 10.1016/j.watres.2010.09.037 [28] CROSS J, SINGER E J. Cationic Surfactants: Analytical and Biological Evaluation[M]. New York: Marcel Dekker, Inc., 1994. [29] SÜTTERLIN H, ALEXY R, KÜMMERER K. The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida[J]. Ecotoxicology & Environmental Safety, 2008, 71(2): 498-505. [30] AN H X, LIU J, LI X M, et al. The fate of cyanuric acid in biological wastewater treatment system and its impact on biological nutrient removal[J]. Journal of Environmental Management, 2017, 206: 901-909. [31] RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. McGraw-Hill Education, 2012. [32] YANG H W, JIANG Z P, SHI S Q, et al. Int-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds[J]. Ecotoxicology and Environmental Safety, 2002, 53(3): 416-421. doi: 10.1016/S0147-6513(02)00002-7 [33] 余容, 万金泉. 造纸废水中二甲苯对微生物活性的影响研究[J]. 工业用水与废水, 2010, 41(2): 32-35. doi: 10.3969/j.issn.1009-2455.2010.02.009 [34] 戴友芝, 施汉昌, 冀静平, 等. 含五氯酚废水的生物降解性和微生物毒性试验[J]. 环境科学, 2000, 21(2): 40-45. doi: 10.3321/j.issn:0250-3301.2000.02.010 [35] HAJAYA M G, PAVLOSTATHIS S G. Modeling the fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater[J]. Bioresource Technology, 2013, 130: 278-287. doi: 10.1016/j.biortech.2012.11.103 [36] SCHRADER M, FAHIMI H D. Peroxisomes and oxidative stress[J]. Biochimica Et Biophysica Acta Molecular Cell Research, 2006, 1763(12): 1755-1766. doi: 10.1016/j.bbamcr.2006.09.006 [37] 滕跃, 张梦影, 黄鸣, 等. 新洁尔灭与过氧化氢酶的微观作用机理[J]. 分子科学学报, 2016, 32(4): 315-319.