-
膜生物反应器(membrane bio-reactor, MBR)是近年来迅速发展起来的既能控制水体污染又能实现污水资源化的新型污水处理技术,被公认为水处理领域最具有发展潜力的高新技术之一,受到了广泛关注,并已被广泛用于市政和工业废水处理与回用领域[1-3]。但是,膜污染导致的通量衰减、运行成本增加等问题仍是制约其大规模应用的瓶颈[4-7],至今仍是MBR研究与应用中的热点和难点。
磁性材料因其生物兼容性良好,已在生物处理工艺中得到了广泛的关注和研究,近来的研究发现磁性材料在延缓MBR膜污染、改善膜通量方面也显示出了巨大潜力[8-10]。并且磁性材料具有磁响应特性,可以通过分离、活化后进行循环使用,经济可行性好。但是,在采用磁性材料适宜粒径的研究方面,研究人员[11-12]得到了不同甚至相悖的结论,因而有必要系统研究微纳米磁性粒子对MBR运行效能的影响。
本研究拟通过对比研究微纳米磁性粒子对MBR系统运行效能的影响,包括污染物去除效果、污泥混合液特性、膜污染情况等,并基于高通量测序、生物信息分析等方法,深入分析微纳米磁性粒子引入后微生物群落演替规律与MBR运行效能的关联,以期为磁活性污泥法应用于MBR膜污染控制领域提供参考。
微纳米磁性粒子对膜生物反应器运行效能的影响
Effect of magnetic microparticles and nanoparticles on the performance of membrane bioreactor
-
摘要: 针对膜生物反应器(MBR)应用中膜污染这一难题,构建了3套MBR系统对比研究了微纳米磁性粒子对MBR运行效能的影响,包括污染物去除效果、污泥混合液特性、膜污染情况等;并基于高通量测序技术,深入分析了微生物群落演替规律与MBR运行效能的关系。结果表明:微纳米磁性粒子的引入均未在污染物去除方面产生负面影响,MBR出水COD浓度低于50 mg·L−1,出水NH
$\ _{{4}}^{{ + }}$ -N维持在5 mg·L−1以下,均可达到国家污水排放标准一级A标准(GB 18918-2002);微纳米磁性粒子的引入均有效减缓了膜污染,并且微米尺度材料延缓效果更显著。膜污染组分分析表明:不同粒径磁性材料引入均有效降低了SMP、LB-EPS各组分浓度;同时有效减少了反应器中大分子物质含量,增加了小分子物质含量,因而降低了膜污染速率。微生物群落分析表明,微纳米磁性粒子的引入可能抑制了应器中易引起膜污染的先锋物种Alphaproteobacteria的生长,有效延缓了膜污染,并且微米粒径材料抑制效果更显著。研究结果可为磁活性污泥法调控MBR膜污染的工程应用提供参考。Abstract: In order to alleviate the problem of membrane fouling in membrane bioreactor (MBR), three MBRs were built to investigate the effects of magnetic microparticles and nanoparticles on their performance, including the pollutants removal, properties of sludge mixed liquor and membrane fouling. High-throughput sequencing was used to deeply analyze the relation between the succession of microbial community and MBR performance. Results showed that the addition of magnetic microparticles or nanoparticles had no adverse impact on pollutants removal in MBRs. The effluent COD and$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N were lower than 50 mg·L−1 and 5 mg·L−1, respectively, which could meet the first-class A standard of Chinese sewage discharge standard (GB 18918-2002). The addition of microparticles or nanoparticles can effectively alleviate membrane pollution, and the alleviation effect of magnetic microparticles was more significant. Analysis of membrane fouling components showed that the additions of magnetic materials with different sizes could effectively reduce the concentrations of SMP and LB-EPS components, and effectively reduce the content of macromolecules, but increase the content of small molecules, thereby the membrane fouling rate decreased. Microbial community analysis showed that the addition of microparticles or nanoparticles may inhibit the growth of pioneer species of Alphaproteobacteria indcuing membrane fouling, and the membrane fouling was effectively alleviated. Moreover, the magnetic microparticles also presented the better performance than nanoparticles. This study is expected to provide reference for engineering practice of regulating membrane fouling of MBR with magnetic activated sludge process.-
Key words:
- membrane fouling /
- magnetic materials /
- magnetic activated sludge /
- pioneer species
-
表 1 污泥样品的微生物群落丰度和多样性指数
Table 1. Microbial community richness and diversity index of sludge samples
样品编号 有效序列 Shannon Chao 覆盖度 CAS_5 55 799 4.618 935 861.069 4 0.997 455 CAS_10 49 569 4.605 335 876.258 1 0.997 075 CAS_15 51 959 4.378 212 874.763 9 0.997 017 CAS_20 49 614 3.965 202 794.851 9 0.997 158 NAS_5 56 247 4.529 297 881.097 8 0.997 315 NAS_10 52 846 4.619 066 884.501 3 0.997 199 NAS_15 49 772 4.425 983 878.125 3 0.996 866 NAS_20 47 236 4.452 381 925.036 1 0.996 528 NAS_25 45 690 4.621 256 786.685 0 0.997 371 NAS_30 61 315 4.531 107 730.338 0 0.996 936 MAS_5 44 388 4.575 355 895.917 6 0.996 443 MAS_10 46 561 4.346 376 844.407 7 0.996 954 MAS_15 49 416 4.585 624 895.652 2 0.997 005 MAS_20 49 870 4.351 472 818.671 6 0.997 112 MAS_25 50 335 4.008 669 763.572 0 0.999 717 MAS_30 61 368 4.682 225 772.632 0 0.999 680 -
[1] HUANG L Y, LEE D J. Membrane bioreactor: A mini review on recent R&D works[J]. Bioresource Technology, 2015, 194: 383-388. doi: 10.1016/j.biortech.2015.07.013 [2] KANNAH R Y, BANU J R, JOE J M, et al. Profitable sludge management via novel combined ozone disperser pretreatment coupled with membrane bioreactor for treating confectionary wastewater[J]. Journal of Cleaner Production, 2019, 239: 102-118. [3] SHIY H, HUANG J H, ZENG G M, et al. Evaluation of soluble microbial products (SMP) on membrane fouling in membrane bioreactors (MBRs) at the fractional and overall level: A review[J]. Reviews in Environmental Science and Bio-Technology, 2018, 17(1): 71-85. doi: 10.1007/s11157-017-9455-9 [4] BANU J R, ESWARI A P, KAVITHA S, et al. Energetically efficient microwave disintegration of waste activated sludge for biofuel production by zeolite: Quantification of energy and biodegradability modelling[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2274-2288. doi: 10.1016/j.ijhydene.2018.06.040 [5] LIU J, ZHANG Z H, LIU Z Y, et al. Integration of ferrate (VI) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment[J]. Journal of Membrane Science, 2018, 552: 315-325. doi: 10.1016/j.memsci.2018.02.031 [6] YANG M, CHEN J B, PENG B Y, et al. Performance and properties of coking nanofiltration concentrate treatment and membrane fouling mitigation by an Fe(II)/persulfate-coagulation-ultrafiltration process[J]. RSC Advances, 2019, 9(27): 15277-15287. doi: 10.1039/C8RA10094B [7] HUDAIB B, GOMES V, SHI J, et al. Poly (vinylidene fluoride)/polyaniline/MWCNT nanocomposite ultrafiltration membrane for natural organic matter removal[J]. Separation and Purification Technology, 2018, 190: 143-155. doi: 10.1016/j.seppur.2017.08.026 [8] MASTERI-FARAHANI M, GHAHREMANNI M. Surface functionalization of graphene oxide and graphene oxide-magnetite nanocomposite with molybdenum-bidentate Schiff base complex[J]. Journal of Physics and Chemistry of Solids, 2019, 130: 6-12. doi: 10.1016/j.jpcs.2019.02.006 [9] CHAN K H, WONG E T, IRFAN M, et al. Enhanced Cu(II) rejection and fouling reduction through fabrication of PEG-PES nanocomposite ultrafiltration membrane with PEG-coated cobalt doped iron oxide nanoparticle[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47: 50-58. doi: 10.1016/j.jtice.2014.09.033 [10] XIAO X Z, LIU S Y, ZHANG X Y, et al. Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles[J]. Powder Technology, 2017, 306: 68-73. doi: 10.1016/j.powtec.2016.10.066 [11] KOULIVAND H, SHAHBAZI A, VATANPOUR V. Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles[J]. Chemical Engineering Research & Design, 2019, 145: 64-75. [12] WANG H Y, CHEN Z Z, MIAO J, et al. A novel approach for mitigation of membrane fouling: Concomitant use of flocculant and magnetic powder[J]. Bioresource Technology, 2016, 209: 318-325. doi: 10.1016/j.biortech.2016.03.010 [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] LIU Y, LI J X, GUO W S, et al. Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment[J]. Bioresource Technology, 2018, 248: 135-139. doi: 10.1016/j.biortech.2017.06.069 [15] BANTI D C, SAMARAS S P, TSIOPTSIAS C, et al. Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment[J]. Separation and Purification Technology, 2018, 202: 119-129. doi: 10.1016/j.seppur.2018.03.045 [16] MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006 [17] ZHANG S Q, SHENG B B, LIN W T, et al. Day/night temperature differences (DNTD) trigger changes in nutrient removal and functional bacteria in membrane bioreactors[J]. Science of the Total Environment, 2018, 636: 1202-1210. doi: 10.1016/j.scitotenv.2018.04.373 [18] CHEN Y S, ZHAO Z, PENG Y K, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process: High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220: 225-232. doi: 10.1016/j.biortech.2016.07.095 [19] LIU Y, LIU Q, LI J X, et al. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment[J]. Bioresource Technology, 2018, 249: 377-385. doi: 10.1016/j.biortech.2017.10.027 [20] WANG B, PENG Y Z, GUO Y Y, et al. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresource Technology, 2016, 207: 118-125. doi: 10.1016/j.biortech.2016.01.072