-
纺织行业中棉织物活性印花工艺一般包括印花、洗网、洗筒、水洗、皂洗等工序,生产过程中会产生大量的工艺废水[1-2]。活性印花废水具有浆料浓度高、活性染料残留多、可生化性相对较好等特点[3]。除此之外,印花废水中残留大量尿素,使印花废水含氮量非常高,从而导致碳氮比失调的问题[4-5]。一般的生化工艺经过厌氧反应器处理,可去除印花废水中部分COD,同时也会将有机氮转化为氨氮,加剧碳氮失调比例,增加了后续的生物脱氮难度。为了解决活性印花废水中高氮问题,行业迫切需要开发一种既高效又经济的生物脱氮技术[6]。
近年来开发出的厌氧氨氧化技术(anaerobic ammonium oxidation, ANAMMOX)为低碳高氮废水提供了高效经济的方法[7]。与传统硝化反硝化相比,ANAMMOX工艺具有节省曝气量和碳源、脱氮效率高、剩余污泥泥少等优点[8]。目前,ANAMMOX工艺已经成功应用于实验室处理高氨氮(>300 mg·L−1)废水,如垃圾渗滤液[9]等。由于厌氧氨氧化工艺以氨氮和亚硝态氮为基质,因此,工艺前段须匹配短程亚硝化工艺来提供亚硝态氮[10-11]。在此基础上,开发出二阶段厌氧氨氧化工艺(如短程硝化-厌氧氨氧化(SHARON-ANAMMOX)工艺[12-13])和平阶段厌氧氨氧化工艺(如完全自养脱氮(completely autotrophic nitrogen removal over nitrite, CANON)工艺[14-15])。
由于工业废水中存在大量化学品或其中间产物(如染料)可能会抑制厌氧氨氧化菌的生长,因此,目前主流厌氧氨氧化工艺应用于处理印花废水方面的研究未见报导。本研究旨在探讨厌氧氨氧化工艺处理高氨氮工业废水的实验应用可行性,以典型的高氮印花废水作为处理目标,将UASB工艺和主流厌氧氨氧化MBR-CANON工艺进行串联,来处理活性印花废水,考察了UASB/MBR-CANON工艺对印染废水COD、高氮和色度去除的效率,验证了该工艺处理高氮活性印花废水的可行性。
UASB/MBR-CANON工艺处理高氮活性印花废水
Treating high nitrogen-containing reactive printing wastewater with UASB/MBR-CANON process
-
摘要: 针对棉织物活性印花废水高氮、高色度、高COD等特点,采用上流式厌氧污泥床反应器与完全自养脱氮膜生物反应器组合工艺(UASB/MBR-CANON),处理模拟高氮活性印花废水。实验过程分为独立启动和串联运行2个阶段,探究了不同基质浓度条件下UASB/MBR-CANON反应器对高氮活性印花废水的处理效果。结果表明:UASB和MBR-CANON反应器分别经过140 d独立启动运行后,UASB反应器与MBR-CANON反应器完成串联运行,此时总氮平均去除率达到72%,COD平均去除率达到74%,染料平均脱色率达到82%;在MBR-CANON反应器运行的200 d 内,通过对膜表面污染物分析发现,膜表面滤饼层胞外聚合物中多糖和蛋白质含量分别为52 mg·L−1和17 mg·L−1。膜通量数据表明,在低通量状态下,膜通量衰减速率较为缓慢,经过清洗后,膜通量可恢复初始通量的80%~90%。进一步分析可知,采用UASB/MBR-CANON工艺处理高氮活性印花废水具有较高的技术可行性,以上研究结果可为该工艺的工程化应用提供参考。Abstract: Aiming at the characteristics of cotton fabric wastewater: high nitrogen content, high chroma and high COD, a combined process with an up-flow anaerobic sludge bed (UASB) and a completely autotrophic nitrogen removal over nitrite (CANON)-membrane bioreactor (MBR) was developed to treat the simulated high nitrogen-containing active printing wastewater. The experiment process was divided into two stages, i.e. an independent start-up stage and a serial operation stage. The treatment efficiency of the simulated printing wastewater by UASB/MBR-CANON process under different substrate concentrations was investigated. After 140 days-independent start-up of the UASB and MBR-CANON reactors, the UASB effluent was gradually fed to the MBR-CANON reactor. Then the average removal efficiencies for TN, COD and chroma by the combined process reached 72%, 74% and 82%, respectively. Within the 200 days-running of the combined process, the contents of polysaccharide and protein in extracellular polymeric substances of membrane cake layer were 52 mg·L−1 and 17 mg·L−1, respectively. The change of membrane flux indicated that the decay rate of flux was slow at a low flux stage, and 80%~90% initial flux could be recovered after cleaning. Results indicated that the combined process is a feasible solution for treating the active printing wastewater, and can provide reference for its industrial application.
-
Key words:
- reactive printing /
- high nitrogen /
- dye /
- anammox /
- membrane bioreactor
-
表 1 UASB进水水质及成分
Table 1. Wastewater quality and compositions of UASB influent
mg·L−1 基质 启动阶段浓度 140 d后浓度 TN 1 000 1 000 COD 500~1 000 1 000 活性黄 100~150 150 P 5.70 5.70 表 2 MBR-CANON进水水质及成分
Table 2. Wastewater compositions of MBR-CANON influent
mg·L−1 基质 启动阶段浓度 140 d后浓度 ${\rm{NH}}_4^ + $ -N50~300 1 146~1 337 COD 0~100 100~200 活性黄 0 20~30 HCO3− 580~1 815 1 815 P 1.42 1.42 -
[1] WANG R, JIN X, WANG Z, et al. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study[J]. Bioresource Technology, 2018, 247: 1233-1241. doi: 10.1016/j.biortech.2017.09.150 [2] WU H F, WANG S H, KONG H L, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater[J]. Bioresource Technology, 2007, 98(7): 1501-1504. doi: 10.1016/j.biortech.2006.05.037 [3] LI F, XIA Q, GAO Y Y, et al. Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor[J]. Environment Science: Water Reasearch & Technology, 2018, 4(2): 272-280. [4] KHATRI A, PEERZADA M H, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015, 87: 50-57. doi: 10.1016/j.jclepro.2014.09.017 [5] WANG L, YAN K, HU C Y. Cleaner production of inkjet printed cotton fabrics using a urea-free ecosteam process[J]. Journal of Cleaner Production, 2017, 143: 1215-1220. doi: 10.1016/j.jclepro.2016.11.182 [6] WANG J D, YAN J J, XU W J. Treatment of dyeing wastewater by MIC anaerobic reactor[J]. Biochemical Engineering Journal, 2015, 101: 179-184. doi: 10.1016/j.bej.2015.06.001 [7] ALI M, OSHILI M, RATHNAYAKE L, et al. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads[J]. Water Research, 2015, 79: 147-157. doi: 10.1016/j.watres.2015.04.024 [8] KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941 [9] ZHANG F Z, PENG Y Z, WANG S Y, et al. Efficient step-feed partial nitrification, simultaneous anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials, 2019, 364: 163-172. doi: 10.1016/j.jhazmat.2018.09.066 [10] LOTTI T, KLEEREBEZEM R, VAN ERP TAALMAN KIP C, et al. Anammox growth on pretreated municipal wastewater[J]. Environment Science Technology, 2014, 48(14): 7874-7880. doi: 10.1021/es500632k [11] SUN N, GE C, AHMAD H A, et al. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor[J]. Bioresource Technology, 2017, 241: 681-691. doi: 10.1016/j.biortech.2017.05.203 [12] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 [13] VAN DONGEN U, JETTEN M S M, VAN LOOSDRECHT M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153-160. doi: 10.2166/wst.2001.0037 [14] HELMER C, TROMM C, HIPPEN A, et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems[J]. Water Science and Technology, 2001, 43(1): 311-320. doi: 10.2166/wst.2001.0062 [15] 王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014, 34(6): 1362-1374. [16] YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063 [17] 朱小雷, 王强, 范雪荣, 等. 淀粉结构对浆料性能的影响[J]. 棉纺织技术, 2015, 43(5): 21-24. doi: 10.3969/j.issn.1001-7415.2015.05.007 [18] DEGRAAF A A V, DEBRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology-UK, 1996, 142: 2187-2196. doi: 10.1099/13500872-142-8-2187 [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136: 654-663. doi: 10.1016/j.biortech.2013.03.007 [21] 张肖静. 基于MBR的全程自养脱氮工艺(CANON)性能及微生物特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [22] ZHANG X J, ZHANG H Z, YE C M, et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors[J]. Bioresource Technology, 2015, 189: 302-308. doi: 10.1016/j.biortech.2015.04.006 [23] ZHEN S M, CHEN S L. Effects of organic carbon on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering, 2001, 25(1): 1-11. doi: 10.1016/S0144-8609(01)00071-1 [24] 邹寒艳. 单级自养脱氮系统中功能菌的分子生物学鉴定及氨氧化反应关键酶基因的克隆与表达[D].重庆: 重庆大学, 2010. [25] 杨继. 几种活性染料的生物降解特性研究[D].上海: 东华大学, 2016. [26] MIAO L, ZHANG Q, WANG S Y, et al. Characterization of EPS compositions and microbial community in an anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116. doi: 10.1016/j.biortech.2017.09.151 [27] LI F, LI J, ZHAO Y, et al. The fouling behavior of microfiltration membranes modified with hydrophilic polymers in membrane bioreactor[J]. Acta Scientiae Circumstantiae, 2016, 36(6): 2005-2012. [28] 李龙翔. 厌氧氨氧化膜生物反应器脱氮性能及膜污染研究[D]. 济南: 山东大学, 2018.