-
有机氯农药(organ chlorine pesticides, OCPs)普遍具有毒性强、难降解、易富集等特点,且部分OCPs 在低剂量长期暴露条件下仍具有内分泌干扰物特性,给生态环境和人类健康带来巨大的潜在威胁。近年来,随着我国工业化和城市化的快速发展及《斯德哥尔摩公约》[1]的履行,大批OCPs生产企业被关闭,遗留污染场地达1 200多个[2]。这些污染场地往往具有污染浓度高、分布较深等特点,已成为我国环境中重要的OCPs污染源。六六六(hexachlorocyclohexane, HCHs)和滴滴涕(dichlorodiphenyltrichloroethane, DDTs)是2种典型的OCPs。截至20世纪80年代,国内DDTs生产量约占世界总产量的20%,而HCHs生产总量占比高达33%[3-5]。OCPs容易在人体内积累, 造成急慢性毒性、内分泌干扰效应和“三致”效应等危害[6-7]。
许多学者采用化学氧化方法(包括芬顿/类芬顿氧化、活化过硫酸盐氧化、高铁酸钾氧化等方法[8-10])降解DDTs或HCHs。其中,高铁酸钾(K2FeO4)是一种兼具氧化和混凝作用的新型环境功能材料[11-15],且其生成的Fe(Ⅲ)通常为纳米级Fe(OH)3胶体,具有很强的吸附性能。有研究[16-17]表明,K2FeO4对γ-HCH具有较高的降解效率,但对DDTs的降解效果未见报道。过硫酸钠(Na2S2O8)通过热、碱、过渡金属或紫外辐射(UV)等方法活化后,可形成硫酸根自由基(SO4 −·)或羟基自由基(OH·),可以高效氧化降解多种类型的有机污染物[18-20]。有研究[21]表明,纳米零价铁活化过硫酸钠对DDTs具有较好的降解效果。在pH=3.2、Fe2+/Na2S2O8=1∶20时,0.16 mol·L−1的活化过硫酸钠反应24 h,DDTs降解率可达90%[22]。
高铁酸盐和活化过硫酸盐分别对HCHs和DDTs均具有较好的降解性能。由于环境介质中DDTs和HCHs往往同时存在,因此,须寻求HCHs和DDTs的同步降解方法。本研究采用K2FeO4和Na2S2O8组成的双氧化体系,考察了K2FeO4单独处理和K2FeO4/Na2S2O8联合处理对HCHs和DDTs降解效率的影响,分析了HCHs和DDTs在K2FeO4/Na2S2O8双氧化体系中的降解产物,并推断其可能存在的降解途径,旨在利用高铁酸盐降解HCHs和高铁酸盐自身降解产生的Fe2+和Fe3+,活化过硫酸盐以进一步降解DDTs,从而实现对HCHs和DDTs的同步协同降解,为K2FeO4/Na2S2O8双氧化体系在环境修复中的应用提供参考。
高铁酸盐与过硫酸钠联合降解水中滴滴涕和六六六
Degradation of DDTs and HCHs in aqueous solution by combined K2FeO4 and Na2S2O8
-
摘要: 针对滴滴涕(DDTs)和六六六(HCHs)等有机氯农药(OCPs)难以同步降解的问题,采用高铁酸钾(K2FeO4)和过硫酸钠(Na2S2O8)联合降解水溶液中的7种OCPs;分别考察了K2FeO4投加量、Na2S2O8投加量和溶液初始pH因素的单独作用及交互作用对OCPs降解率的影响;采用气相色谱-质谱联用仪分析鉴定了降解产物,并探讨了K2FeO4/Na2S2O8体系对各OCPs的降解机理。结果表明:K2FeO4/Na2S2O8体系处理的OCPs降解率大于K2FeO4单独处理下的降解率;碱性环境(pH=9~11)有利于α-HCH和γ-HCH的降解,弱碱性环境(pH=7~9)有利于DDTs的降解,中性环境(pH=7)有利于β-HCH的降解。采用二次多项式和逐步回归法可以较好地拟合和预测OCPs降解率与反应条件的关系,当K2FeO4投加量8 g·L−1、Na2S2O8投加量2 g·L−1、pH=11时,总环境风险削减率可达79.16%,与验证实验结果相近。这表明模型具有较好的预测能力。K2FeO4/Na2S2O8联合处理对OCPs 的降解途径主要为脱氯脱氢,但仍有不完全脱氯产物残留。与K2FeO4单独处理相比,K2FeO4/Na2S2O8双氧化体系实现了对DDTs和HCHs的高效同步降解。Abstract: Organ chlorine pesticides (OCPs), such as DDTs and HCHs, are difficult to degrade synchronously. In this study, K2FeO4 and Na2S2O8 were used to degrade seven kinds of OCPs in aqueous solution. The independent effects and interactions of K2FeO4 dosage, Na2S2O8 dosage and initial pH of the solution on the degradation rate of OCPs were studied. The degradation products were analyzed by GC/MS, and the combined degradation mechanism of K2FeO4/Na2S2O8 on OCPs was discussed. The results show that the degradation rates of OCPs in K2FeO4/Na2S2O8 degradation system were greater than those in K2FeO4 alone system. Alkaline conditions (pH=9~11) favored α-HCH and γ-HCH degradation, weak alkaline conditions (pH=7~9) favored DDTs degradation, and neutral conditions (pH=7) favored β-HCH degradation. The relationship between the degradation rates of OCPs and the reaction conditions can be well fitted and predicted by quadratic polynomial and stepwise regression. At K2FeO4 dosage of 8 g·L−1, Na2S2O8 dosage of 2 g·L−1 and pH 11, the total environmental risk reduction rate could be predicated to 79.16%, which was close to the verification experiment results, indicating that the model had good predictive ability. The main degradation pathway of HCHs and DDTs by K2FeO4/Na2S2O8 combined treatment was dechlorination and dehydrogenation, but there were still incomplete dechlorination products. Compared with K2FeO4 alone, K2FeO4/Na2S2O8 double oxidation system achieved high efficient simultaneous degradation of DDTs and HCHs.
-
表 1 中心组合设计的因素及水平
Table 1. Variables and code levels of CCD
水平
(Xi)因素 (A)K2FeO4/(g·L−1) (B)Na2S2O8/(g·L−1) (C)pH −1 2 0 7 0 5 1 9 1 8 2 11 表 2 HCHs和DDTs的大鼠急性半致死浓度(LD50)和毒性系数
Table 2. Acute semi-dead concentrations and toxicity coefficients of HCHs and DDTs for rats
OCPs LD50/(mg·kg-1) Li α-HCH 177 0.43 β-HCH 6 000 0.01 γ-HCH 76 1 p,p′-DDE 880 0.09 p,p′-DDD 113 0.67 o,p′-DDT 1 000 0.08 p,p′-DDT 87 0.87 表 3 中心组合设计实验结果
Table 3. Results of Center combination design experiment
运行编号 变量对应水平(Xi) OCPs降解率/% 总环境风险
削减率/%K2FeO4/(g·L−1) Na2S2O8/(g·L−1) pH α-HCH β-HCH γ-HCH p,p′-DDE p,p′-DDD o,p′-DDT p,p′-DDT 1 5 0 11 83.64 55.96 83.92 55.59 45.61 62.87 53.91 65.99 2 8 2 9 53.91 64.51 52.23 73.96 71.38 73.53 77.13 64.61 3 5 1 9 41.70 63.39 37.93 62.07 55.31 66.42 65.87 51.36 4 8 1 7 52.64 59.50 51.78 61.72 62.16 61.55 62.90 57.73 5 2 0 9 48.89 57.68 47.57 54.77 43.81 57.73 50.32 48.19 6 8 0 9 49.70 42.22 48.08 61.79 42.63 66.86 61.36 51.62 7 5 0 7 22.83 33.86 20.08 31.24 26.42 37.08 29.85 25.29 8 5 2 7 42.31 63.42 39.95 49.67 39.47 51.49 45.64 42.39 9 5 1 9 47.30 61.89 45.50 68.50 59.13 72.36 65.52 55.55 10 8 1 11 89.12 21.03 90.79 56.37 54.80 57.77 53.99 70.65 11 2 1 7 29.00 46.69 28.17 28.53 17.39 33.55 21.86 24.45 12 5 2 11 81.69 35.02 82.06 58.79 50.71 60.74 54.70 66.39 13 5 1 9 29.85 54.24 28.00 69.03 62.02 70.06 70.04 49.42 14 2 1 11 74.37 33.41 74.46 46.54 37.28 49.53 44.12 56.56 表 4 模型拟合结果
Table 4. Results of model fitting
模型编号 各模型拟合公式 F值 R2 1 Y1=−57.675 37+0.842 18A+5.718 21B+11.378 02C 9.34 0.918 2 2 Y2=−305.108 34+63.103 18B+77.085 82C−6.312 61BC−4.133 42C2 6.68 0.927 7 3 Y3=−64.614 79+0.973 46A+5.488 47B+11.953 43C 9.39 0.919 2 4 Y4=−384.585 35+10.771 31A+6.846 26B+88.747 39C−0.973 41AC−4.499 83C2 11.48 0.964 5 5 Y5=2.540 28+2.699 06A+8.852 64B+2.685 4C 9.8 0.933 4 6 Y6=−321.413 32+1.749 17A+4.766 91B+80.830 73C−4.326 53C2 10.2 0.903 1 7 Y7=−424.476 84+14.848 27A+5.668 45B+94.559 72C−1.298 99AC−4.731 14C2 20.15 0.918 0 8 Y8=−24.656 90+1.968 09A+6.310 89B+6.859 03C 11.02 0.950 4 表 5 优化降解条件的验证结果
Table 5. Verification result of optimal degradation conditions
污染物 模型模拟结果 实验验证结果 误差 α-HCH 88.940 2 92.133 9 3.193 7 β-HCH 51.207 2 47.649 1 3.558 1 γ-HCH 92.686 1 91.957 5 0.728 6 p,p′-DDE 72.670 2 74.845 6 2.175 4 p,p′-DDD 65.514 3 67.270 8 1.756 5 o,p′-DDT 74.874 3 78.991 9 4.117 6 p,p′-DDT 70.786 3 72.052 7 1.266 4 总环境风险削减率 79.157 7 80.232 4 1.074 7 表 6 HCHs和DDTs的高分辨精确质量与二级质谱碎片
Table 6. High-resolution accurate mass and secondary mass spectrometry fragment of HCHs and DDTs
化合物 出峰时间/min 理论质荷比 测量质荷比 质量误差/10−6 特征碎片离子质荷比 第1种 第2种 第3种 PCCH 5.74 251.883 4 251.883 1 1.3 183 181 75 1,2,4-TCB 3.52 179.930 0 179.929 8 0.7 180 182 145 1,3,5-TCB 3.80 179.930 0 179.929 7 0.8 180 182 145 2,4-DTBP 6.00 206.167 1 206.166 6 1.5 191 57 41 BHT 6.07 220.182 7 220.182 5 0.7 205 57 220 DDMU 4.58 281.977 0 281.976 8 0.2 212 282 284 o,p'-DDE 4.63 315.938 0 315.937 6 1.4 246 248 318 米托坦 5.09 317.953 7 317.953 2 0.5 237 237 165 -
[1] 余刚, 周隆超, 黄俊, 等. 关注POPs 关注生命安全:持久性有机污染物和《斯德哥尔摩公约》履约[J]. 造纸信息, 2011(5): 12-15. [2] 燕云仲, 薛南冬, 周玲莉, 等. 挖掘扰动对污染场地空气中六六六, 滴滴涕分布的影响[J]. 环境科学研究, 2014, 27(6): 642-648. [3] EI-SHAHWI M S, HAMZA A, BASHAMMAKH A S, et al. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants[J]. Talanta, 2010, 80(5): 1587-1597. doi: 10.1016/j.talanta.2009.09.055 [4] JONES K C, VOOGT P D. Persistent organic pollutants (POPs): State of the science[J]. Environmental Pollution, 1999, 100(1): 209-221. [5] FU J, MAI B, SHENG G, et al. Persistent organic pollutants in environment of the Pearl River Delta, China: An overview[J]. Chemosphere, 2003, 52(9): 1411-1422. doi: 10.1016/S0045-6535(03)00477-6 [6] RISSATO S R, GALHIANE M S, XIMENES V F, et al. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the northeastern part of São Paulo State, Brazil[J]. Chemosphere, 2006, 65(11): 1949-1958. doi: 10.1016/j.chemosphere.2006.07.011 [7] MAHUGIJA J A M, HENKELMANN B, SCHRAMM K. Levels, compositions and distributions of organochlorine pesticide residues in soil 5-14 years after clean-up of former storage sites in Tanzania[J]. Chemosphere, 2014, 117: 330-337. doi: 10.1016/j.chemosphere.2014.07.052 [8] 万金忠. 有机氯杀虫剂污染土壤的化学淋洗修复研究[D]. 武汉: 华中科技大学, 2011. [9] 肖鹏飞, 秦必达, 李玉文. 非离子表面活性剂强化白腐菌及其粗酶液对有机氯农药的降解[J]. 应用与环境生物学报, 2015, 21(1): 22-28. [10] YUAN S H, ZHENG Z H, MENG X Z, et al. Surfactant mediated HCB dechlorination in contaminated soils and sediments by micro and nanoscale Cu/Fe Particles[J]. Geoderma, 2010, 159(1/2): 165-173. [11] SUN S, PANG S Y, JIANG J, et al. The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2018, 333: 11-19. doi: 10.1016/j.cej.2017.09.082 [12] HOMOLKOVÁ M, HRABÁK P, GRAHAM N, et al. A study of the reaction of ferrate with pentachlorophenol: Kinetics and degradation products[J]. Water Science and Technology, 2017, 75(1): 189-195. doi: 10.2166/wst.2016.496 [13] YAN N, LI M, LIU Y, et al. Kinetic and thermodynamic studies of chlorinated organic compound degradation by siderite-activated peroxide and persulfate[J]. Water, Air & Soil Pollution, 2017, 228(12): 453-461. [14] KHAN S, HE X, KHAN J A, et al. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system[J]. Chemical Engineering Journal, 2016, 318: 135-142. [15] CIABATTI I, TOGNOTTI F, LOMBARDI L. Treatment and reuse of dyeing effluents by potassium ferrate[J]. Desalination, 2010, 250(1): 222-228. doi: 10.1016/j.desal.2009.06.019 [16] 姚静波, 侯华川, 王明新, 等. 一种利用纳米零价铁/高铁酸钾联合修复有机氯污染土壤的方法: CN106734163A[P]. 2017-05-31. [17] 姚静波, 季彩亚, 王明新, 等. 一种柠檬酸辅助高铁酸钾降解土壤中六六六的方法: CN106734165A[P]. 2017-05-31. [18] BEKRIS L, FRONTISTIS Z, TRAKATIS G, et al. Graphene: A new activator of sodium persulfate for the advanced oxidation of parabens in water[J]. Water Research, 2017, 126: 111-121. doi: 10.1016/j.watres.2017.09.020 [19] EBERSON L. Electron transfer reactions in organic chemistry[J]. Advances in Physical Organic Chemistry, 1982, 18: 79-185. [20] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [21] ZHU C, FANG G, DIONVSIOU D D, et al. Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: A mechanistic study[J]. Journal of Hazardous Materials, 2016, 316: 232-241. doi: 10.1016/j.jhazmat.2016.05.040 [22] 魏海江, 杨兴伦, 叶茂, 等. 活化过硫酸钠氧化法修复DDTs污染场地土壤研究[J]. 土壤, 2014, 46(3): 504-511. doi: 10.3969/j.issn.1674-5906.2014.03.021 [23] ROMERO A, SANTOS A, VICENTE F, et al. Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage[J]. Chemical Engineering Journal, 2010, 162(1): 257-265. doi: 10.1016/j.cej.2010.05.044 [24] YUAN S, LIAO P, ALSHAWABKEH A N. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater[J]. Environmental Science & Technology, 2014, 48(1): 656-663. [25] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908. [26] 王立立, 曲久辉, 王忠秋, 等. 高铁稳定性及其影响因素的研究[J]. 东北电力学院学报, 1999, 1(1): 9-13. [27] 李青松, 金伟伟, 马晓雁, 等. 高铁酸钾氧化去除水中三氯生的研究[J]. 中国环境科学, 2016, 36(9): 2665-2671. doi: 10.3969/j.issn.1000-6923.2016.09.018 [28] PENG L, DENG D, GUAN M, et al. Remediation HCHs POPs-contaminated soil by activated persulfate technologies: Feasibility, impact of activation methods and mechanistic implications[J]. Separation & Purification Technology, 2015, 150: 215-222. [29] SANTOS A, FERNANDEZ J, RODRIGUEZ S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment, 2018, 615: 1070-1077. doi: 10.1016/j.scitotenv.2017.09.224 [30] 李琳. 吹脱及化学氧化处理地下水中1, 1, 1-三氯乙烷技术的研究[D]. 上海: 华东理工大学, 2011. [31] WU H J, WANG J X, HUANG J M, et al. Optimization of cudrania extractum tablets formulation by central composite design-response surface methodology[J]. Fudan University Journal of Medical Sciences, 2008, 35(3): 363-370. [32] LI Y F, MACDONALD R W, JANTUNEN L M M, et al. The transport of ß-hexachlorocyclohexane to the western arctic ocean: A contrast to α-HCH[J]. Science of the Total Environment, 2002, 291: 229-246. doi: 10.1016/S0048-9697(01)01104-4 [33] 王占杰. 有机氯化物滴滴涕降解研究[D]. 北京: 北京化工大学, 2008. [34] 杨青. DDT在菌根植物中的迁移转化和根际降解机理研究[D]. 北京: 北京大学, 2009.