-
随着城镇居民生活污水排放量的大量增加,以及污水中氮、磷等污染物浓度的不断升高,相应的处理压力亦日渐增大。污水厂排水是污水经二级生化处理后的出水,是地表水及地下水中氮、磷等污染的主要来源,其大规模集中式地排放已使污染负荷远远超过受纳水体自净能力,对受纳水体生态环境造成严重破坏[1]。目前,我国已全面启动全国城镇污水处理厂向《城镇污水处理厂污染物排放标准》一级A的提标改造[2];同时,我国在“十二五”和“十三五”规划中也明确了城镇污水处理厂排水的总氮控制目标。针对我国中小城镇污水点多、面广、量小、分散等特征,直接采用常规污水处理系统在经济和技术上均难有成效。
污水厂排水作为典型的低C/N比污水(COD/TN<(3~5)∶1),常规水处理工艺中的微生物由于缺乏有机碳源而难以进一步脱除水中的氮和磷[3]。为此,研究者开发出短程硝化反硝化(SHARON)、厌氧氨氧化(Anammox)等生物脱氮新工艺[4-5],这类工艺能高效地去除污水中的有机污染物,减少平均污水处理面积和运行人员数量,能较好地适应污水厂排水水质的波动,在实际工程中取得了一定效果。但其对温度(T)、DO、pH、游离氨(FA)、污泥龄及有毒物质、HRT的控制条件要求严格[6-7],且不适应低氮素浓度、低C/N比污水中氮的深度脱除[8-10],因此,须对现有工艺进行改良或研发新的水处理技术,以适应污水厂排水的水质特征。
针对实际工程应用中对处理工艺低成本、高效能的要求,本研究开发了一种污水化学催化生物耦合床(CCBF)技术。该技术通过铁基质载体及碳纤维载体在反应器内部形成的层次分明的好氧/微氧区,使污水始终处于好氧/微氧交替的环境中;在反应器底部,设置合理曝气量使溶解氧能够稳定输送到各微氧区,同时促进碳源在反应区内部的均匀分配,实现了电化学与生物作用耦合的运行机制下污水厂排水的深度脱氮除磷[11]。本研究重点考察了水力停留时间(HRT)对脱氮除磷效果的影响,建立了不同停留时间下的深度脱氮动力学模型,通过对反应器处理效能的实验研究、机理探讨、动力学建立及参数求解为污水厂排水深度处理提供参考。
基于物化生化耦合的污水深度脱氮除磷新工艺
Mechanism of strengthened deep nitrogen and phosphorus removal from sewage based on physicochemical and biochemical coupling process
-
摘要: 为了解决常规污水处理技术无法进行完整的硝化反硝化过程,污水厂出水中氨氮、总氮、总磷偏高以及运行成本较高的问题,以某污水厂排水为研究对象,通过物化与生化耦合,构建化学催化生物耦合床(CCBF)脱氮系统,研究CCBF系统对污水厂排水中氨氮、总氮、总磷和COD的去除效能。结果表明:当DO为5.5~6.0 mg·L−1、RT为8 h、C/N为1.5∶1时,CCBF可将
${\rm{NH}}_4^{+} $ -N从48.5 mg·L−1降至4.58 mg·L−1、TN从51.2 mg·L−1降至6.5 mg·L−1、TP从6.6 mg·L−1降至0.48 mg·L−1、COD从78.5 mg·L−1降至33 mg·L−1,去除率分别达到89.5%、85.7%、92.5%和57.9%;污水经处理后,氨氮、总氮、总磷、COD均达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放标准。利用Eckenfelder方程对系统脱氮过程进行模拟,求得${n_{{\rm{NH}}_4^ +{\text{-}} {\rm{N}}}} $ =0.314 76,nTN=0.282 21,${K_{{\rm{NH}}_4^ +{\text{-}} {\rm{N}}}} $ =0.128 02,KTN=0.218 59,与水力负荷为0.000 8~0.007 m3·(m2·min)−1的常规生物处理相比,系统内部生物量充足、活性高,物化与生物耦合强化效果明显。Abstract: Currently, the conventional wastewater treatment plants have faced many problems such as incomplete nitrification and denitrification with conventional wastewater treatment technologies, high ammonia nitrogen, total nitrogen and total phosphorus concentrations in the effluent, and high operational cost. In this study, based on the physicochemical and biochemical coupling process, a chemical catalytic bio-coupled filter (CCBF) was constructed to treat the drainage from the wastewater treatment plant. The removal efficiencies of ammonia nitrogen, total nitrogen, total phosphorus and COD in this drainage by CCBF were studied. The results showed at DO of 5.5~6.0 mg·L−1, HRT of 8 h, C/N ratio of 1.5∶1, CCBF could reduce${\rm{NH}}_4^ + $ -N from 48.5 mg·L−1 to 4.58 mg·L-1, TN from 51.2 mg·L−1 to 6.5 mg·L−1, TP from 6.6 mg·L−1 to 0.48 mg·L−1, and COD from 78.5 mg·L−1 to 33 mg·L-1, respectively, and their removal efficiencies corresponded to 89.5%, 85.7%, 92.5% and 57.9%, respectively. The above four indictors of CCBF effluent could meet the first-class A emission level of national pollutant discharge standard of urban sewage treatment plant (GB18918-2002). The nitrogen removal process in the CCBF system was simulated by Eckenfelder equation. Reaction orders of${n_{{\rm{NH}}_4^ + {\text{-}} {\rm{N}}}} $ =0.314 76 and nTN=0.282 21, reactor rate constants of${K_{{\rm{NH}}_4^ + {\text{-}}{\rm{N}}}} $ = 0.128 02 and KTN=0.218 59, were determined with correlation coefficients (R2) of 0.983 3 for the simulation on${\rm{NH}}_4^{+} $ -N removal. In comparison with the conventional biological treatment technology at hydraulic loading of 0.000 8~0.007 m3·(m2·min)−1, the CCBF process contained high content and active biomass, and obvious physicochemical and biochemical coupling effects occurred accordingly. -
表 1 生活污水及处理出水水质特征
Table 1. Water quantity of domestic sewage and CCBF effluent
原水及出水 ${\rm{NH}}_4^{+} $ -N/(mg·L−1)${\rm{NO}}_2^{-} $ -N/(mg·L−1)${\rm{NO}}_3^{-} $ -N/(mg·L−1)TN/(mg·L−1) TP/(mg·L−1) COD/(mg·L−1) pH 原水 47~86 <0.1 <1.8 55~102 3.5~8.6 106~267 6.90~7.85 出水 3.7~5.9 <0.5 17.6~19.1 21.5~28.8 0.3~1.2 39~75 6.76~7.95 表 2 K/Ln的拟合数据
Table 2. K/Ln fitting data
拟合对象 沿程编号 α R2 水力负荷/ (m3·(m2·min)−1) ${\rm{NH}}_4^{+} $ -NL1 −1.461 0.855 55 0.000 884 6 L2 −1.315 61 0.749 57 0.001 769 L3 −1.055 28 0.971 1 0.003 538 L4 −0.759 86 0.912 67 0.007 077 TN L1 −1.259 01 0.776 08 0.000 884 6 L2 −1.609 68 0.798 91 0.001 769 L3 −1.998 59 0.792 13 0.003 538 L4 −2.248 45 0.882 84 0.007 077 表 3 h/Ln的拟合数据
Table 3. h/Ln fitting data table
拟合对象 沿程编号 K R2 水力负荷/(m3·(m2·min)−1) ${\rm{NH}}_4^{+} $ -NL1 0.104 87 0.977 45 0.000 884 6 L2 0.112 26 0.958 93 0.001 769 L3 0.176 42 0.935 26 0.003 538 L4 0.118 54 0.983 33 0.007 077 TN L1 0.275 29 0.966 19 0.000 884 6 L2 0.248 78 0.916 02 0.001 769 L3 0.198 78 0.900 96 0.003 538 L4 0.151 54 0.807 59 0.007 077 -
[1] 万正芬. 城镇污水处理厂出水中氮磷高效吸附填料的筛选[D]. 青岛: 中国海洋大学, 2015. [2] 周慧, 徐得潜, 马常仁, 等. A/O-膜生物反应器工艺应用于城市污水处理厂出水提标改造的研究[J]. 环境污染与防治, 2011, 33(12): 13-17. doi: 10.3969/j.issn.1001-3865.2011.12.003 [3] 邓时海, 李德生, 卢阳阳, 等. 集成模块系统同步硝化反硝化处理低碳氮比污水的实验[J]. 中国环境科学, 2014, 34(9): 2259-2265. [4] VAN NIEL E W J, ARTS P A M, WESSELINKB J, et al. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures[J]. FEMS Microbiology Letters, 2010, 102(2): 109-118. [5] SAYESS R R, SAIKALY P E, EL-ADEL M, et al. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor[J]. Water Research, 2013, 47(2): 881-894. doi: 10.1016/j.watres.2012.11.023 [6] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377. doi: 10.1016/S0043-1354(02)00475-X [7] 沙之杰, 杨勇. 短程硝化反硝化生物脱氮技术综述[J]. 西昌学院学报(自然科学版), 2008, 22(3): 61-64. doi: 10.3969/j.issn.1673-1891.2008.03.018 [8] 杨延栋, 黄京, 韩晓宇, 等. 一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动[J]. 中国环境科学, 2015, 35(4): 1082-1087. [9] 张正哲, 姬玉欣, 陈辉, 等. 厌氧氨氧化工艺的应用现状和问题[J]. 生物工程学报, 2014, 30(12): 1804-1816. [10] 户海燕, 瞿思宜, 张正哲, 等. 分子生物技术在厌氧氨氧化工艺研究中的应用[J]. 环境科学与技术, 2016, 39(1): 2620-2643. [11] 张琪, 李德生, 邓时海, 等. 基于铁碳内电解的物化-生物耦合深度脱氮[J]. 水处理技术, 2016, 42(10): 92-96. [12] 邓时海. 生物法与物化法耦合深度处理低碳氮比污水[C] //中国环境科学学会. 2016中国环境科学学会学术年会论文集: 第2卷, 2016: 2571-2580. [13] 郑炜晔. 基于铁质载体与生物耦合深度处理低C/N比生活污水的研究[D]. 北京: 北京交通大学, 2018. [14] SINTHUSITH N, TERADA A, HAHN M, et al. Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants[J]. Journal of Environmental Science and Health, 2015, 50(2): 169-175. [15] HOSONO T, TOKUNAGA T, KAGABU M, et al. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution[J]. Water Research, 2013, 47(8): 2661-2675. doi: 10.1016/j.watres.2013.02.020 [16] 李德生, 胡倩怡, 崔玉玮, 等. 化学催化法脱除模拟地下水中硝酸盐氮[J]. 化工学报, 2015, 66(6): 2288-2294. [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [18] 高梦佳, 王淑莹, 王衫允, 等. 脉冲式流量波动对厌氧氨氧化UASB反应器的影响[J]. 中国环境科学, 2016, 36(8): 2347-2354. doi: 10.3969/j.issn.1000-6923.2016.08.014 [19] HONG S, ZHANG J, FENG C, et al. Enhancement of nitrate removal in synthetic groundwater using wheat rice stone[J]. Water Science & Technology, 2012, 66(9): 1900. [20] LIU K, WANG H Y, MA M J, et al. Effect of temperature on denitrification of deep denitrification MBBR in municipal wastewater treatment plant[J]. Environmental Science Research, 2016, 29(6): 987-993. [21] AKUNNA J C, BIZEAU C, MOLETTA R. Denitrification in anaerobic digesters: Possibilities and influence of wastewater COD/N-NOx ratio[J]. Environmental Technology Letters, 1992, 13(9): 825-836. doi: 10.1080/09593339209385217 [22] PENG L, LIU Y, GAO S H, et al. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes[J]. Water Research, 2016, 89: 1-8. doi: 10.1016/j.watres.2015.11.031 [23] QIAO X, PENG H, YOU C, et al. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction[J]. Journal of Power Sources, 2015, 288: 253-260. doi: 10.1016/j.jpowsour.2015.04.118 [24] 李楠. SBR系统在低温条件下的废水生物除磷性能及除磷途径分析[D]. 哈尔滨: 哈尔滨工业大学, 2010. [25] LI L, GAO W. Inhibition of nitrous acid on aerobic phosphorus uptake by polyphosphate bacteria[J]. Environmental Pollution Control, 2013, 35(9): 67-70. [26] FAN J, WAN X, ZHANG W. Adsorption competition of potassium ions required for biological phosphorus removal by iron phosphate precipitation[J]. Environmental Science and Technology, 2014, 4: 57-61. [27] 胡智丰. 基于特定吸附填料去除污染水体中氮和磷[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集: 第2卷, 2017: 2570-2577. [28] CHEN H, LIU Y, XU X, et al. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater[J]. Water Research, 2019, 148(1): 344-358. [29] 陈杰云. 多级A/O+好氧生物膜组合工艺特性及处理污水效能研究[D]. 重庆: 重庆大学, 2013. [30] 高大文, 袁青, 黄晓丽, 等. 基质质量浓度对不同载体UAFB-Anammox反应器脱氮性能的影响[J]. 北京工业大学学报, 2015, 41(10): 1493-1500. doi: 10.11936/bjutxb2015040026 [31] 邓时海. 生物法与物化法耦合深度处理低碳氮比污水[C] // 中国环境科学学会. 2016中国环境科学学会学术年会论文集: 第2卷, 2016: 2571-2580. [32] WANG C R, LI J, WANG B Z, et al. Empirical model for treatment of domestic sewage by two different aerated biological filters[J]. Journal of Environmental Engineering, 2005, 6(12): 59-63. [33] YAN G, XU X, YAO L, et al. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor[J]. Bioresource Technology, 2011, 102(7): 4628-4632. doi: 10.1016/j.biortech.2011.01.009