微波-Fenton高级氧化工艺降解水中BPA

李硕, 张广山, 王鹏. 微波-Fenton高级氧化工艺降解水中BPA[J]. 环境工程学报, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
引用本文: 李硕, 张广山, 王鹏. 微波-Fenton高级氧化工艺降解水中BPA[J]. 环境工程学报, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
LI Shuo, ZHANG Guangshan, WANG Peng. Degradation of BPA from water by microwave-Fenton advanced oxidative technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
Citation: LI Shuo, ZHANG Guangshan, WANG Peng. Degradation of BPA from water by microwave-Fenton advanced oxidative technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035

微波-Fenton高级氧化工艺降解水中BPA

  • 基金项目:

    中央高校基本科研业务费专项基金资助(HIT.NSRIF.201671)

    中国博士后科学基金(2014M561356)

    城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2015DX03)

  • 中图分类号: X703.1

Degradation of BPA from water by microwave-Fenton advanced oxidative technology

  • Fund Project:
  • 摘要: 以提高目标物的降解效果和投加药剂利用率、缩短反应时间及节约处理成本为目的,探讨4种不同光助-Fenton氧化工艺对环境内分泌干扰物双酚A(BPA)的降解效果。以BPA的去除率和反应速率作为评价指标,采用紫外分光光度计、TOC测定仪及分子荧光光度计分别对BPA的去除率、反应体系的矿化度和·OH的生成量进行研究。确定了微波-Fenton氧化工艺降解水中BPA的效果最佳,并深入研究pH值、H2O2投加量、n(H2O2)/n(Fe2+)、微波反应功率及时间对微波-Fenton氧化工艺的影响。结果表明:pH=3,n(H2O2)/n(Fe2+)为20,H2O2浓度为2 mmol·L-1,反应时间为5 min,反应功率为300 W的条件下,BPA初始浓度为100 mg·L-1时其去除率最高达99.67%,矿化度达53%;pH值在2~6范围内对BPA均有降解效果,铁泥量也有一定的减少。为微波-Fenton氧化工艺的实际应用奠定了理论基础,并且提供了技术支持。
  • 加载中
  • [1] 周丹, 王春晖, 赵永红. Fe/AC非均相Fenton体系降解BPA. 环境工程学报, 2014, 8(12):5284-5288 ZHOU Dan, WANG Chunhui, ZHAO Yonghong. Degradation of BPA by heterogeneous Fenton-like action using active carbon-Fe. Chinese Journal of Environmental Engineering, 2014, 8(12):5284-5288(in Chinese)
    [2] COOK J. W., DODDS E. C., HEWETT C. L. A synthetic oestrus-exciting compound. Nature, 1933, 131(3298):56-57
    [3] DODDS E. C., LAWSON W. Synthetic strogenic agents without the phenanthrene nucleus. Nature, 1936, 137(3476):996
    [4] YANG Xuejing, TIAN Pengfei, ZHANG Chengxi, et al. Au/carbon as Fenton-like catalysts for the oxidative degradation of bisphenol A. Applied Catalysis B:Environmental, 2013, 134-135:145-152
    [5] LU Nan, LU Ying, LIU Fangyuan, et al. H3PW12O40/TiO2 catalyst-induced photo degradation of bisphenol A (BPA):Kinetics, toxicity and degradation path ways. Chemosphere, 2013, 91(9):1266-1272
    [6] ZHANG Huiqi. Controlled/"living" radical precipitation polymerization:A versatile polymerization technique for advanced functional polymers. European Polymer Journal, 2013, 49(3):579-600
    [7] 丁世敏, 李碧润, 方卢秋, 等. Fe(Ⅲ)-酒石酸盐配合物对双酚A模拟废水的光处理. 环境工程学报, 2010, 4(6):1251-1256 DING Shimin, LI Birun, FANG Luqiu, et al. Photo-treatment of bisphenol-A induced by ferric-tartrate complex system. Chinese Journal of Environmental Engineering, 2010, 4(6):1251-1256(in Chinese)
    [8] 何志明, 李秀芬, 堵国成, 等. 微曝气Fenton氧化法处理模拟双酚A废水的效果及其生物验证. 环境工程学报, 2009, 3(9):1573-1578 HE Zhiming, LI Xiufen, DU Guocheng, et al. Performance of micro-aeration Fenton oxidation process treating Synthetic bisphenol A wastewater and its biological validation. Chinese Journal of Environmental Engineering, 2009, 3(9):1573-1578(in Chinese)
    [9] 赵生培, 王东田, 周颖, 等. 超声波/零价铁降解水中双酚A. 环境工程学报, 2012, 6(12):4417-4422 ZHAO Shengpei, WANG Dongtian, ZHOU Ying, et al. Degradation of bisphenol A from water by ultrasound/zero-valent iron. Chinese Journal of Environmental Engineering, 2012, 6(12):4417-4422(in Chinese)
    [10] IOAN I., WILSON S., LUNDANES E., et al. Comparison of Fenton and sono-Fenton bisphenol a degradation. Journal of Hazardous Materials, 2007, 142(1/2):559-563
    [11] DE LA CRUZ N., ESQUIUS L., Grandjean D., et al. Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research, 2013, 47(15):5836-5845
    [12] HUANG Wenyu, BRIGANTE M., WU Feng, et al. Development of a new homogenous photo-Fenton process using Fe(Ⅲ)-EDDS complexes. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 239:17-23
    [13] 韩琦, 王宏杰, 董文艺, 等. 高铁酸盐和臭氧氧化法降解水中双酚A的研究. 工业用水与废水, 2014, 45(5):14-18 HAN Qi, WANG Hongjie, DONG Wenyi, et al. Degradation of bisphenol A in water through oxidation by ferrate and ozone. Industrial Water & Wastewater, 2014, 45(5):14-18(in Chinese)
    [14] 徐斌, 高乃云, 芮旻, 等. 饮用水中内分泌干扰物双酚A的臭氧氧化降解研究. 环境科学, 2006, 27(2):294-299 XU Bin, GAO Naiyun, RUI Min., et al. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation. Environmental Science, 2006, 27(2):294-299(in Chinese)
    [15] 潘维倩, 张广山, 郑彤, 等. 微波耦合类Fenton处理水中对硝基苯酚. 中国环境科学, 2014, 34(12):3112-3118 PAN Weiqian, ZHANG Guangshan, ZHENG Tong, et al. Treatment of p-nitrophenol in water by Fenton-like reaction with microwave coupling. China Environmental Science, 2014, 34(12):3112-3118(in Chinese)
    [16] CLEVELAND V., BINGHAM J. P., KAN E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Separation and Purification Technology, 2014, 133:388-395
    [17] 杨基先, 王蕾, 郭海娟, 等. Fe3O4-H2O2类Fenton体系催化降解苯酚, 哈尔滨工业大学学报, 2014, 46(12):39-44 YANG Jixian, WANG Lei, GUO Haijuan, et al. Catalyzed degradation of phenol by Fe3O4-H2O2 Fenton-like system. Journal of Harbin Institute of Technology, 2014, 46(12):39-44(in Chinese)
    [18] LI Cong, LI Xiangzhong. Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation. Water Science & Technology, 2007, 55(1/2):217-223
    [19] POORAHONG S., THAMMAKHET C., THAVARUNGKUL P., et al. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2013, 48(3):242-250
    [20] FUKAHORI S. J., ICHIURA H., KITAOKA T., et al. Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets. Applied Catalysis B:Environmental, 2003, 46(3):453-462
    [21] ZHAO Wenhui, SHEN Na, ZHU Rong, et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. Journal of Hazardous Materials, 2010, 179(1/2/3):223-229
    [22] 蔡苇, 符春林, 胡文广, 等. 微波烧结制备铁酸铋陶瓷的介电性和铁电性. 人工晶体学报, 2013, 42(8):1574-1579 CAI Wei, FU Chunlin, HU Wenguang, et al. Dielectric and ferroelectric properties of bismuth ferrite ceramics prepared by microwave sintering. Journal of Synthetic Crystals, 2013, 42(8):1574-1579(in Chinese)
    [23] LI Nan, WANG Peng, ZUO Chen, et al. Microwave-enhanced Fenton process for DMSO-containing wastewater. Environmental Engineering Science, 2010, 27(3):271-280
    [24] 牛文军, 沈亚乐, 许静, 等. Fe3O4纳米微球的溶剂热法合成及其对二甲酚橙的催化降解研究. 无机化学学报, 2013, 29(10):2110-2118 NIU Wenjun, SHEN Yale, XU Jing, et al. Solvothermal synthesis of Fe3O4 nanospheres and study on the catalytic degradation of xylenol orange. Chinese Journal of Inorganic Chemistry, 2013, 29(10):2110-2118(in Chinese)
    [25] 王浩宇, 苏本生, 黄丹, 等. 好氧污泥颗粒化过程中Zeta电位与EPS的变化特性. 环境科学, 2012, 33(5):1614-1620 WANG Haoyu, SU Bensheng, HUANG Dan, et al. Profiles of zeta potential and EPS in granulation process of aerobic sludge. Environmental Science, 2012, 33(5):1614-1620(in Chinese)
    [26] 王鹏, 郑彤, 张广山. 环境微波化学技术. 北京:科学出版社, 2014
  • 加载中
计量
  • 文章访问数:  2565
  • HTML全文浏览数:  2241
  • PDF下载数:  501
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-04
  • 刊出日期:  2016-12-08
李硕, 张广山, 王鹏. 微波-Fenton高级氧化工艺降解水中BPA[J]. 环境工程学报, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
引用本文: 李硕, 张广山, 王鹏. 微波-Fenton高级氧化工艺降解水中BPA[J]. 环境工程学报, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
LI Shuo, ZHANG Guangshan, WANG Peng. Degradation of BPA from water by microwave-Fenton advanced oxidative technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035
Citation: LI Shuo, ZHANG Guangshan, WANG Peng. Degradation of BPA from water by microwave-Fenton advanced oxidative technology[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6879-6886. doi: 10.12030/j.cjee.201507035

微波-Fenton高级氧化工艺降解水中BPA

  • 1.  哈尔滨工业大学市政环境工程学院, 哈尔滨 150090
  • 2.  城市水资源与水环境国家重点实验室, 哈尔滨 150090
基金项目:

中央高校基本科研业务费专项基金资助(HIT.NSRIF.201671)

中国博士后科学基金(2014M561356)

城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2015DX03)

摘要: 以提高目标物的降解效果和投加药剂利用率、缩短反应时间及节约处理成本为目的,探讨4种不同光助-Fenton氧化工艺对环境内分泌干扰物双酚A(BPA)的降解效果。以BPA的去除率和反应速率作为评价指标,采用紫外分光光度计、TOC测定仪及分子荧光光度计分别对BPA的去除率、反应体系的矿化度和·OH的生成量进行研究。确定了微波-Fenton氧化工艺降解水中BPA的效果最佳,并深入研究pH值、H2O2投加量、n(H2O2)/n(Fe2+)、微波反应功率及时间对微波-Fenton氧化工艺的影响。结果表明:pH=3,n(H2O2)/n(Fe2+)为20,H2O2浓度为2 mmol·L-1,反应时间为5 min,反应功率为300 W的条件下,BPA初始浓度为100 mg·L-1时其去除率最高达99.67%,矿化度达53%;pH值在2~6范围内对BPA均有降解效果,铁泥量也有一定的减少。为微波-Fenton氧化工艺的实际应用奠定了理论基础,并且提供了技术支持。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回