过硫酸钠/钴离子/超声波协同降解酸性橙7

万子谦, 张静, 张古承, 丁超, 陈云宇. 过硫酸钠/钴离子/超声波协同降解酸性橙7[J]. 环境工程学报, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
引用本文: 万子谦, 张静, 张古承, 丁超, 陈云宇. 过硫酸钠/钴离子/超声波协同降解酸性橙7[J]. 环境工程学报, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
WAN Ziqian, ZHANG Jing, ZHANG Gucheng, DING Chao, CHEN Yunyu. Degradation of Acid Orange 7 by Na2S2O8/Co2+/ultrasound system[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
Citation: WAN Ziqian, ZHANG Jing, ZHANG Gucheng, DING Chao, CHEN Yunyu. Degradation of Acid Orange 7 by Na2S2O8/Co2+/ultrasound system[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057

过硫酸钠/钴离子/超声波协同降解酸性橙7

  • 基金项目:

    国家自然科学基金资助项目(51008052)

    教育部新世纪优秀人才支持计划(NCET-11-0082)

  • 中图分类号: X703

Degradation of Acid Orange 7 by Na2S2O8/Co2+/ultrasound system

  • Fund Project:
  • 摘要: 以酸性橙7(AO7)为目标污染物,研究了过硫酸钠(Na2S2O8)/钴离子(Co2+)/超声波(US)协同降解水体中AO7的过程及其降解机理,并分别考察了Na2S2O8初始浓度、AO7初始浓度、催化剂投加量和超声波功率对AO7降解率的影响。实验结果表明,过硫酸钠/钴离子/超声波协同工艺能有效的降解水中的酸性橙7。初始AO7浓度越低降解效果越好。超声功率在200~450 W之间时,AO7的降解率随着超声波功率的增大同样先升高后降低。在体系中加入乙醇和叔丁醇后明显抑制AO7的降解,证明该体系中主要氧化物种为硫酸根自由基(SO4-·)和羟基自由基(·OH)。
  • 加载中
  • [1] 王兵, 李娟, 莫正平, 等. 基于硫酸自由基的高级氧化技术研究及应用进展. 环境工程, 2012, 30(4):53-57 WANG Bing, LI Juan, MO Zhengping, et al. Progress in advanced oxidation processes based on sulfate radical. Environmental Engineering, 2012, 30(4):53-57(in Chinese)
    [2] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术. 化学进展, 2008, 20(9):1433-1438 YANG Shiying, CHEN Youyuan, XU Huizhen, et al. A novel advanced oxidation technology based on activated persulfate. Progress in Chemistry, 2008, 20(9):1433-1438(in Chinese)
    [3] LIN Yating, LIANG Chenju, CHEN J. H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere, 2011, 82(8):1168-1172
    [4] HORI H., NAGAOKA Y., MURAYAMA M., et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology, 2008, 42(19):7438-7443
    [5] LIANG Chenju, BRUELL C. J., MARLEY M. C., et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9):1213-1223
    [6] 张金凤, 杨曦, 郑伟, 等. 水体系中Fe(Ⅱ)/S2O82--S2O32-降解敌草隆的研究. 中国环境科学, 2008, 28(7):620-623 ZHANG Jinfeng, YANG Xi, ZHENG Wei, et al. Studies on Fe(Ⅱ)/S2O82--S2O32- degrading diuron in aqueous system. China Environmental Science, 2008, 28(7):620-623(in Chinese)
    [7] 孙威, 刘春婷, 李娜. 金属离子在过硫酸盐降解甲基橙染料废水中活化作用的比较分析. 辽宁化工, 2014, 43(11):1373-1375 SUN Wei, LIU Chunting, LI Na. Comparative analysis of the activation of metal ions in degradation of methyl orange wastewater by persulfate. Liaoning Chemical Industry, 2014, 43(11):1373-1375(in Chinese)
    [8] YANG Shiying, YANG Xin, SHAO Xueting, et al. Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature. Journal of Hazardous Materials, 2011, 186(1):659-666
    [9] ZHANG Lei, GUO Xingjia, YAN Fei, et al. Study of the degradation behaviour of dimethoate under microwave irradiation. Journal of Hazardous Materials, 2007, 149(3):675-679
    [10] HOUSE D. A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962, 62(3):185-203
    [11] 陈晓旸, 薛智勇, 吴丹, 等. 基于硫酸自由基的高级氧化技术及其在水处理中的应用. 水处理技术, 2009, 35(5):16-20 CHEN Xiaoyang, XUE Zhiyong, WU Dan, et al. The advanced oxidation technology based on sulfate radical and application in water treatment. Technology of Water Treatment, 2009, 35(5):16-20(in Chinese)
    [12] ANIPSITAKIS G. P., DIONYSIOU D. D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003, 37(20):4790-4797
    [13] 史惠祥, 赵德明, 雷乐成, 等. US/H2O2系统协同降解苯酚的动力学研究. 化工学报, 2003, 54(10):1436-1441 SHI Huixiang, ZHAO Deming, LEI Lecheng, et al. Synergetic kinetics of phenol degradation in water using ultrasonic/H2O2 system. Journal of Chemical Industry and Engineering, 2003, 54(10):1436-1441(in Chinese)
    [14] 马春莹, 徐峥, 刘晓峻. 超声波和紫外光协同降解酸性橙Ⅱ水溶液的机理研究. 声学学报, 2009, 34(2):187-192 MA Chunying, XU Zheng, LIU Xiaojun. Study of the synergistic effects on degradation of acid orange Ⅱ solution under combined irradiation of ultrasound and ultraviolet light. Acta Acustica, 2009, 34(2):187-192(in Chinese)
    [15] 吴国枝, 吴纯德, 张捷鑫, 等. 超声、臭氧、光催化及其组合工艺处理苯酚废水. 工业用水与废水, 2007, 38(5):38-41 WU Guozhi, WU Chunde, ZHANG Jiexin, et al. Treatment of phenol-containing wastewater by ultrasound, ozone, photocatalysis and combined process. Industrial Water & Wastewater, 2007, 38(5):38-41(in Chinese)
    [16] 马前, 梅滨, 庄琳懿, 等. 超声辅助电催化氧化降解苯酚的研究. 环境污染治理技术与设备, 2006, 7(10):51-54 MA Qian, MEI Bin, ZHUANG Linyi, et al. Study on ultrasound-assisted electro-catalytic oxidation of phenol in water. Techniques and Equipment for Environmental Pollution Control, 2006, 7(10):51-54(in Chinese)
    [17] 邱立萍, 王文科. 超声波-高锰酸钾降解地下水中硝基苯的机理与效果. 工业安全与环保, 2012, 38(1):1-5 QIU Liping, WANG Wenke. Mechanism and efficiency of nitrobenzene degradation in underground water by ultrasound-potassium permanganate. Industrial Safety and Environmental Protection, 2012, 38(1):1-5(in Chinese)
    [18] 杨世迎, 张君, 韩强, 等. HCO3-对Co2+催化HSO5-降解水中偶氮染料酸性橙7的影响. 环境化学, 2014, 33(3):500-507 YANG Shiying, ZHANG Jun, HAN Qiang, et al. Influence of HCO3- on the degradation of azo dye acid orange 7 by Co2+/HSO5- system. Environmental Chemistry, 2014, 33(3):500-507(in Chinese)
    [19] BANDARA J., MIELCZARSKI J. A., KIWI J. 1. Molecular mechanism of surface recognition. Azo dyes degradation on Fe, Ti, and Al oxides through metal sulfonate complexes. Langmuir, 1999, 15(22):7670-7679
    [20] 魏红, 杨虹, 高扬, 等. 超声/K2S2O8体系降解水中左旋氧氟沙星的研究. 西北农林科技大学学报(自然科学版), 2015, 13(3):1-6 WEI Hong, YANG Hong, GAO Yang, et al. Degradation of levofloxacin in aqueous solution using US/K2S2O8. Journal of Northwest A&F University (Natural Science Edition), 2015, 13(3):1-6(in Chinese)
    [21] CRIQUET J., VEL LEITNER N. K. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere, 2009, 77(2):194-200
    [22] 陈晓旸, 陈景文, 杨萍, 等. 均相Co/PMS系统降解吡虫啉的影响因素及降解途径研究. 环境科学, 2007, 28(12):2816-2820 CHEN Xiaoyang, CHEN Jingwen, YANG Ping, et al. Influential factors and degradation pathway of imidacloprid by homogeneous Co/PMS system. Environmental Science, 2007, 28(12):2816-2820(in Chinese)
    [23] SU Shengnan, GUO Weilin, YI Chunliang, et al. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrasonics Sonochemistry, 2012, 19(3):469-474
    [24] MULLER J. G., HICKERSON R. P., PEREZ R. J., et al. DNA damage from sulfite autoxidation catalyzed by a nickel (Ⅱ) peptide. Journal of the American Chemical Society, 1997, 119(7):1501-1506
    [25] HAYON E., TREININ A., WILF J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5-radicals. Journal of the American Chemical Society, 1972, 94(1):47-57
    [26] WESTERHOFF P., AIKEN G., AMY G., et al. DEBROUX. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research, 1999, 33(10):2265-2276
  • 加载中
计量
  • 文章访问数:  2532
  • HTML全文浏览数:  2181
  • PDF下载数:  601
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-10
  • 刊出日期:  2016-12-08
万子谦, 张静, 张古承, 丁超, 陈云宇. 过硫酸钠/钴离子/超声波协同降解酸性橙7[J]. 环境工程学报, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
引用本文: 万子谦, 张静, 张古承, 丁超, 陈云宇. 过硫酸钠/钴离子/超声波协同降解酸性橙7[J]. 环境工程学报, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
WAN Ziqian, ZHANG Jing, ZHANG Gucheng, DING Chao, CHEN Yunyu. Degradation of Acid Orange 7 by Na2S2O8/Co2+/ultrasound system[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057
Citation: WAN Ziqian, ZHANG Jing, ZHANG Gucheng, DING Chao, CHEN Yunyu. Degradation of Acid Orange 7 by Na2S2O8/Co2+/ultrasound system[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6887-6892. doi: 10.12030/j.cjee.201507057

过硫酸钠/钴离子/超声波协同降解酸性橙7

  • 1. 四川大学建筑与环境学院, 成都 610065
  • 2. 大庆石油责任有限公司, 大庆 163000
基金项目:

国家自然科学基金资助项目(51008052)

教育部新世纪优秀人才支持计划(NCET-11-0082)

摘要: 以酸性橙7(AO7)为目标污染物,研究了过硫酸钠(Na2S2O8)/钴离子(Co2+)/超声波(US)协同降解水体中AO7的过程及其降解机理,并分别考察了Na2S2O8初始浓度、AO7初始浓度、催化剂投加量和超声波功率对AO7降解率的影响。实验结果表明,过硫酸钠/钴离子/超声波协同工艺能有效的降解水中的酸性橙7。初始AO7浓度越低降解效果越好。超声功率在200~450 W之间时,AO7的降解率随着超声波功率的增大同样先升高后降低。在体系中加入乙醇和叔丁醇后明显抑制AO7的降解,证明该体系中主要氧化物种为硫酸根自由基(SO4-·)和羟基自由基(·OH)。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回