环形流化床光催化氧化反应器流场数值模拟

费聿超, 闫岩, 付晓铮, 宋博宇, 李海涛, 张忠国. 环形流化床光催化氧化反应器流场数值模拟[J]. 环境工程学报, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
引用本文: 费聿超, 闫岩, 付晓铮, 宋博宇, 李海涛, 张忠国. 环形流化床光催化氧化反应器流场数值模拟[J]. 环境工程学报, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
FEI Yuchao, YAN Yan, FU Xiaozheng, SONG Boyu, LI Haitao, ZHANG Zhongguo. Flow-field simulation of annular fluidized bed photocatalytic oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
Citation: FEI Yuchao, YAN Yan, FU Xiaozheng, SONG Boyu, LI Haitao, ZHANG Zhongguo. Flow-field simulation of annular fluidized bed photocatalytic oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034

环形流化床光催化氧化反应器流场数值模拟

  • 基金项目:

    国家科技部科研院所技术开发研究专项资金项目(2013EG111129)

    北京市科学技术研究院海外人才专项资助项目(OTP-2013-015)

  • 中图分类号: X131.2

Flow-field simulation of annular fluidized bed photocatalytic oxidation reactor

  • Fund Project:
  • 摘要: 采取计算流体力学(CFD)方法对环形流化床光催化氧化反应器内部流场进行了模拟计算,重点考察了重力、废水流速、反应器放置方式等对微米级TiO2催化剂浓度分布、颗粒温度的影响。结果表明,对于水平放置的反应器,催化剂浓度分布受重力影响比较显著,且增大反应器入口处废水流速,催化剂颗粒浓度径向分布会趋于均匀;增大反应器入口处废水流速,可以提高边界层中催化剂颗粒温度,促进催化剂颗粒向流体主体做径向运动。与水平放置相比较,反应器竖直放置使流场中催化剂浓度径向分布更均匀,有利于提高光催化氧化反应的速率和效率。
  • 加载中
  • [1] 陈刚, 李丹阳, 张光明. 高浓度难降解有机废水处理技术. 工业水处理, 2003, 23(3):13-16 CHEN Gang, LI Danyang, ZHANG Guangming. Treatment technologies for highly concentrated refractory organic wastewater. Industrial Water Treatment, 2003, 23(3):13-16(in Chinese)
    [2] MOOK W. T., CHAKRABARTI M. H., AROUA M. K., et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology:A review. Desalination, 2012, 285:1-13
    [3] 王增玉, 张敬东. 难生物降解有机废水处理技术现状与发展. 工业水处理, 2002, 22(12):1-5 WANG Zengyu, ZHANG Jingdong. Development and status guo of treatment technology of organic wastewater containing refractory compounds. Industrial Water Treatment, 2002, 22(12):1-5(in Chinese)
    [4] CASSANO A. E., MARTIN C. A., BRANDI R. J., et al. Photoreactor analysis and design:Fundamentals and applications. Industrial & Engineering Chemistry Research, 1995, 34(7):2155-2201
    [5] HAJAGHAZADEH M., VAIANO V., SANNINO D., et al. Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catalysis Today, 2014, 230:79-84
    [6] LINSEBIGLER A. L., LU Guangquan, YATES J. T. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3):735-758
    [7] KARABELAS A. J., SARASIDIS V. C., PATSIOS S. I. The effect of UV radiant power on the rate of polysaccharide photocatalytic mineralization. Chemical Engineering Journal, 2013, 229:484-491
    [8] APOPEI P., CATRINESCU C., TEODOSIU C., et al. Mixed-phase TiO2 photocatalysts:Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Applied Catalysis B:Environmental, 2014, 160-161:374-382
    [9] 陈志铮, 刘勇弟, 化艳娇, 等. 光催化氧化(UV+TiO2)法处理印染废水生化出水及其各类有机物去除. 环境化学, 2013, 32(9):1792-1797 CHEN Zhizheng, LIU Yongdi, HUA Yanjiao, et al. Photocatalytic oxidation degradation of bio-treated effluents of textile and dyeing wastewater and its removal efficiency of organic substances. Environmental Chemistry, 2013, 32(9):1792-1797(in Chinese)
    [10] KENT F. C., MONTREUIL K. R., BROOKMAN R. M., et al. Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2. Water Research, 2011, 45(18):6173-6180
    [11] 耿启金, 郭庆杰, 曹长青, 等. 多相光催化反应器的研究进展. 化工进展, 2008, 27(1):68-73 GENG Qijin, GUO Qingjie, CAO Changqing, et al. Review of heterogenous photocatalytic reactor. Chemical Industry and Engineering Progress, 2008, 27(1):68-73(in Chinese)
    [12] 刘守新, 刘鸿. 光催化及光电催化基础与应用. 北京:化学工业出版社, 2006
    [13] 王福军. 计算流体动力学分析:CFD软件原理与应用. 北京:清华大学出版社, 2004
    [14] ANDERSON T. B., JACKSON R. A fluid mechanical description of fluidized beds:Equations of motion. Industrial & Engineering Chemistry Fundamental, 1967, 6(4):527-539
    [15] GIDASPOW D. Multiphase Flow and Fluidization:Continuum and Kinetic Theory Description. San Diego:Academic Press, 1994
    [16] 齐洪波. 流化床气液两相流流场数值模拟研究. 哈尔滨:哈尔滨工业大学硕士学位论文, 2008 QI Hongbo. Research on numerical simulation of gas-liquid flow field in fluidized bed. Harbin:Master Dissertation of Harbin Institute of Technology, 2008(in Chinese)
    [17] 陈建敏. 光催化流体动力学及降解草酸钠的数值模拟. 北京:北京交通大学硕士学位论文, 2014 CHEN Jianmin. Numerical simulation of fluid dynamics and photocatalytic degradation of sodium oxalate. Beijing:Master Dissertation of Beijing Jiaotong University, 2014(in Chinese)
    [18] 尤宏, 陈其伟, 刘婷, 等. 内循环流化床光催化反应器的数值模拟与结构优化. 中国环境科学, 2009, 29(5):481-485 YOU Hong, CHEN Qiwei, LIU Ting, et al. Numerical simulation study of internal circulating fluidized bed photocatalytic reactor. China Environmental Science, 2009, 29(5):481-485(in Chinese)
  • 加载中
计量
  • 文章访问数:  2783
  • HTML全文浏览数:  2324
  • PDF下载数:  448
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-18
  • 刊出日期:  2016-12-08
费聿超, 闫岩, 付晓铮, 宋博宇, 李海涛, 张忠国. 环形流化床光催化氧化反应器流场数值模拟[J]. 环境工程学报, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
引用本文: 费聿超, 闫岩, 付晓铮, 宋博宇, 李海涛, 张忠国. 环形流化床光催化氧化反应器流场数值模拟[J]. 环境工程学报, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
FEI Yuchao, YAN Yan, FU Xiaozheng, SONG Boyu, LI Haitao, ZHANG Zhongguo. Flow-field simulation of annular fluidized bed photocatalytic oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034
Citation: FEI Yuchao, YAN Yan, FU Xiaozheng, SONG Boyu, LI Haitao, ZHANG Zhongguo. Flow-field simulation of annular fluidized bed photocatalytic oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6873-6878. doi: 10.12030/j.cjee.201506034

环形流化床光催化氧化反应器流场数值模拟

  • 1. 中国轻工业节能节水与废水资源化重点实验室(轻工业环境保护研究所), 北京 100089
  • 2. 中国科学院过程工程研究所多相复杂系统国家重点实验室, 北京 100190
基金项目:

国家科技部科研院所技术开发研究专项资金项目(2013EG111129)

北京市科学技术研究院海外人才专项资助项目(OTP-2013-015)

摘要: 采取计算流体力学(CFD)方法对环形流化床光催化氧化反应器内部流场进行了模拟计算,重点考察了重力、废水流速、反应器放置方式等对微米级TiO2催化剂浓度分布、颗粒温度的影响。结果表明,对于水平放置的反应器,催化剂浓度分布受重力影响比较显著,且增大反应器入口处废水流速,催化剂颗粒浓度径向分布会趋于均匀;增大反应器入口处废水流速,可以提高边界层中催化剂颗粒温度,促进催化剂颗粒向流体主体做径向运动。与水平放置相比较,反应器竖直放置使流场中催化剂浓度径向分布更均匀,有利于提高光催化氧化反应的速率和效率。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回