TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)

罗肃霜, 杨春平, 何慧军, 龙智勇, 程燕. TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)[J]. 环境工程学报, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
引用本文: 罗肃霜, 杨春平, 何慧军, 龙智勇, 程燕. TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)[J]. 环境工程学报, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
LUO Sushuang, YANG Chunping, HE Huijun, LONG Zhiyong, CHEN Yan. Synthesis of TiO2/chitosan/graphene oxide adsorbent beads for adsorption of As(Ⅲ)[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
Citation: LUO Sushuang, YANG Chunping, HE Huijun, LONG Zhiyong, CHEN Yan. Synthesis of TiO2/chitosan/graphene oxide adsorbent beads for adsorption of As(Ⅲ)[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092

TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)

  • 基金项目:

    国家自然科学基金资助项目(51278464,51478172)

    国家国际科技合作专项项目(2015DFG92750)

  • 中图分类号: X703

Synthesis of TiO2/chitosan/graphene oxide adsorbent beads for adsorption of As(Ⅲ)

  • Fund Project:
  • 摘要: 用化学混合法将采用Hummer方法制备的氧化石墨烯加载到了二氧化钛/壳聚糖基复合微粒中,并用于水中As(Ⅲ)的去除。通过扫描电镜、Zeta电位仪和BET比表面积分析仪对微粒进行了表征。结果表明,经改性后的二氧化钛/壳聚糖/氧化石墨烯复合微粒在紫外光照下最大吸附容量可达12.43 mg·g-1,而二氧化钛/壳聚糖微粒的最大吸附量仅为4.97 mg·g-1。吸附动力学符合拟二级动力学模型,吸附等温线可用Langmuir模型描述。随pH值的增加,吸附剂对As(Ⅲ)的吸附量逐渐减小。该新型复合微粒吸附剂制备方式、合成条件简单,具有吸附容量较高和易于固液分离再生的优点,因此对水中除As(Ⅲ)有较好的应用前景。
  • 加载中
  • [1] BHATTACHARYA P., MUKHERJEE A., BUNDSCHUH J. Arsenic in Soil and Groundwater Environment. Amsterdam:Elsevier, 2007
    [2] TUZEN M., ÇITAK D., MENDIL D., et al. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. Talanta, 2009, 78(1):52-56
    [3] RATNAIKE R. N. Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 2003, 79(933):391-396
    [4] BASU A., SAHA D., SAHA R., et al. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 2014, 40(2):447-485
    [5] RODRíGUEZ-LADO L., SUN Guifan, BERG M., et al. Groundwater arsenic contamination throughout China. Science, 2013, 341(6148):866-868
    [6] BASKAN M. B., PALA A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 2010, 254(1/2/3):42-48
    [7] AN B., FU Zengli, XIONG Zhong, et al. Synthesis and characterization of a new class of polymeric ligand exchangers for selective removal of arsenate from drinking water. Reactive and Functional Polymers, 2010, 70(8):497-507
    [8] MONDAL P., MAJUMDER C. B., MOHANTY B. Laboratory based approaches for arsenic remediation from contaminated water:Recent developments. Journal of Hazardous Materials, 2006, 137(1):464-479
    [9] DHOBLE R. M., LUNGE S., BHOLE A. G., et al. Magnetic binary oxide particles (MBOP):A promising adsorbent for removal of AS (Ⅲ) in water. Water Research, 2011, 45(16):4769-4781
    [10] MILLER S. M., ZIMMERMAN J. B. Novel, bio-based, photoactive arsenic sorbent:TiO2-impregnated chitosan bead. Water Research, 2010, 44(19):5722-5729
    [11] GANG D. D., DENG Baolin, Lin L. As (Ⅲ) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 2010, 182(1/2/3):156-161
    [12] DUTTA P. K., RAY A. K., SHARMA V. K., et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 2004, 278(2):270-275
    [13] FERGUSON M. A., HOFFMANN M. R., HERING J. G., et al. TiO2-photocatalyzed AS (Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effects of adsorption. Environmental Science & Technology, 2005, 39(6):1880-1886
    [14] WANG Shaobin, SUN Hongqi, ANG H. M., et al. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal, 2013, 226:336-347
    [15] LIU Li, LI Cui, BAO Changli, et al. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (Ⅲ) and Pd (Ⅱ). Talanta, 2012, 93:350-357
    [16] MOON G. H., KIM D. H., KIM H. I., et al. Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environment Science & Technology Letters, 2014, 1(2):185-190
    [17] 耿静漪, 朱新生, 杜玉扣. TiO2-石墨烯光催化剂:制备及引入石墨烯的方法对光催化性能的影响. 无机化学学报, 2012, 28(2):357-361 GENG Jingyi, ZHU Xinsheng, DU Yukou. TiO2-graphene photocatalyst:Preparation and effect of the introducation of graphene on photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2012, 28(2):357-361(in Chinese)
    [18] JING Chuanyong, MENG Xiaoguang, CALVACHE E., et al. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environmental Pollution, 2009, 157(8/9):2514-2519
    [19] LI Yuan, LIU Jingrong, JIA Shaoyi, et al. TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chemical Engineering Journal, 2012, 191:66-74
    [20] ELSON C. M., DAVIES D. H., HAYES E. R. Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Research, 1980, 14(9):1307-1311
    [21] CHASSARY P., VINCENT T., GUIBAL E. Metal anion sorption on chitosan and derivative materials:A strategy for polymer modification and optimum use. Reactive and Functional Polymers, 2004, 60:137-149
    [22] HROZUM N., DEMIR M. M., NAIRAT M., et al. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Advances, 2013, 3(21):7828-7837
    [23] NABI D., ASLAM I., QAZI I. A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences, 2009, 21(3):402-408
    [24] MAHANTA N., VALIYAVEETTIL S. Functionalized poly (vinyl alcohol) based nanofibers for the removal of arsenic from water. RSC Advances, 2013, 3(8):2776-2783
  • 加载中
计量
  • 文章访问数:  2352
  • HTML全文浏览数:  1966
  • PDF下载数:  487
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-21
  • 刊出日期:  2016-09-10
罗肃霜, 杨春平, 何慧军, 龙智勇, 程燕. TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)[J]. 环境工程学报, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
引用本文: 罗肃霜, 杨春平, 何慧军, 龙智勇, 程燕. TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)[J]. 环境工程学报, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
LUO Sushuang, YANG Chunping, HE Huijun, LONG Zhiyong, CHEN Yan. Synthesis of TiO2/chitosan/graphene oxide adsorbent beads for adsorption of As(Ⅲ)[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092
Citation: LUO Sushuang, YANG Chunping, HE Huijun, LONG Zhiyong, CHEN Yan. Synthesis of TiO2/chitosan/graphene oxide adsorbent beads for adsorption of As(Ⅲ)[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4873-4878. doi: 10.12030/j.cjee.201504092

TiO2/壳聚糖/氧化石墨烯复合微粒的制备及吸附As(Ⅲ)

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
  • 3.  浙江工商大学环境科学与工程学院, 浙江省固体废物处理与资源化重点实验室, 杭州 310018
基金项目:

国家自然科学基金资助项目(51278464,51478172)

国家国际科技合作专项项目(2015DFG92750)

摘要: 用化学混合法将采用Hummer方法制备的氧化石墨烯加载到了二氧化钛/壳聚糖基复合微粒中,并用于水中As(Ⅲ)的去除。通过扫描电镜、Zeta电位仪和BET比表面积分析仪对微粒进行了表征。结果表明,经改性后的二氧化钛/壳聚糖/氧化石墨烯复合微粒在紫外光照下最大吸附容量可达12.43 mg·g-1,而二氧化钛/壳聚糖微粒的最大吸附量仅为4.97 mg·g-1。吸附动力学符合拟二级动力学模型,吸附等温线可用Langmuir模型描述。随pH值的增加,吸附剂对As(Ⅲ)的吸附量逐渐减小。该新型复合微粒吸附剂制备方式、合成条件简单,具有吸附容量较高和易于固液分离再生的优点,因此对水中除As(Ⅲ)有较好的应用前景。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回