[1] |
BHATTACHARYA P., MUKHERJEE A., BUNDSCHUH J. Arsenic in Soil and Groundwater Environment. Amsterdam:Elsevier, 2007
|
[2] |
TUZEN M., ÇITAK D., MENDIL D., et al. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. Talanta, 2009, 78(1):52-56
|
[3] |
RATNAIKE R. N. Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 2003, 79(933):391-396
|
[4] |
BASU A., SAHA D., SAHA R., et al. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 2014, 40(2):447-485
|
[5] |
RODRíGUEZ-LADO L., SUN Guifan, BERG M., et al. Groundwater arsenic contamination throughout China. Science, 2013, 341(6148):866-868
|
[6] |
BASKAN M. B., PALA A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 2010, 254(1/2/3):42-48
|
[7] |
AN B., FU Zengli, XIONG Zhong, et al. Synthesis and characterization of a new class of polymeric ligand exchangers for selective removal of arsenate from drinking water. Reactive and Functional Polymers, 2010, 70(8):497-507
|
[8] |
MONDAL P., MAJUMDER C. B., MOHANTY B. Laboratory based approaches for arsenic remediation from contaminated water:Recent developments. Journal of Hazardous Materials, 2006, 137(1):464-479
|
[9] |
DHOBLE R. M., LUNGE S., BHOLE A. G., et al. Magnetic binary oxide particles (MBOP):A promising adsorbent for removal of AS (Ⅲ) in water. Water Research, 2011, 45(16):4769-4781
|
[10] |
MILLER S. M., ZIMMERMAN J. B. Novel, bio-based, photoactive arsenic sorbent:TiO2-impregnated chitosan bead. Water Research, 2010, 44(19):5722-5729
|
[11] |
GANG D. D., DENG Baolin, Lin L. As (Ⅲ) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 2010, 182(1/2/3):156-161
|
[12] |
DUTTA P. K., RAY A. K., SHARMA V. K., et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 2004, 278(2):270-275
|
[13] |
FERGUSON M. A., HOFFMANN M. R., HERING J. G., et al. TiO2-photocatalyzed AS (Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effects of adsorption. Environmental Science & Technology, 2005, 39(6):1880-1886
|
[14] |
WANG Shaobin, SUN Hongqi, ANG H. M., et al. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal, 2013, 226:336-347
|
[15] |
LIU Li, LI Cui, BAO Changli, et al. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (Ⅲ) and Pd (Ⅱ). Talanta, 2012, 93:350-357
|
[16] |
MOON G. H., KIM D. H., KIM H. I., et al. Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite. Environment Science & Technology Letters, 2014, 1(2):185-190
|
[17] |
耿静漪, 朱新生, 杜玉扣. TiO2-石墨烯光催化剂:制备及引入石墨烯的方法对光催化性能的影响. 无机化学学报, 2012, 28(2):357-361 GENG Jingyi, ZHU Xinsheng, DU Yukou. TiO2-graphene photocatalyst:Preparation and effect of the introducation of graphene on photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2012, 28(2):357-361(in Chinese)
|
[18] |
JING Chuanyong, MENG Xiaoguang, CALVACHE E., et al. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environmental Pollution, 2009, 157(8/9):2514-2519
|
[19] |
LI Yuan, LIU Jingrong, JIA Shaoyi, et al. TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chemical Engineering Journal, 2012, 191:66-74
|
[20] |
ELSON C. M., DAVIES D. H., HAYES E. R. Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Research, 1980, 14(9):1307-1311
|
[21] |
CHASSARY P., VINCENT T., GUIBAL E. Metal anion sorption on chitosan and derivative materials:A strategy for polymer modification and optimum use. Reactive and Functional Polymers, 2004, 60:137-149
|
[22] |
HROZUM N., DEMIR M. M., NAIRAT M., et al. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Advances, 2013, 3(21):7828-7837
|
[23] |
NABI D., ASLAM I., QAZI I. A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences, 2009, 21(3):402-408
|
[24] |
MAHANTA N., VALIYAVEETTIL S. Functionalized poly (vinyl alcohol) based nanofibers for the removal of arsenic from water. RSC Advances, 2013, 3(8):2776-2783
|