利用微拟球藻去除污水中氮磷及生产富油生物质

赵阳国, 师振华, 王亚洁, 白洁, 郭亮. 利用微拟球藻去除污水中氮磷及生产富油生物质[J]. 环境工程学报, 2016, 10(5): 2367-2374. doi: 10.12030/j.cjee.201412229
引用本文: 赵阳国, 师振华, 王亚洁, 白洁, 郭亮. 利用微拟球藻去除污水中氮磷及生产富油生物质[J]. 环境工程学报, 2016, 10(5): 2367-2374. doi: 10.12030/j.cjee.201412229
Zhao Yangguo, Shi Zhenhua, Wang Yajie, Bai Jie, Guo Liang. Removal of nitrogen and phosphorus in urban sewage and simultaneous production of oil-rich biomass by Nannochloropsis sp.[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2367-2374. doi: 10.12030/j.cjee.201412229
Citation: Zhao Yangguo, Shi Zhenhua, Wang Yajie, Bai Jie, Guo Liang. Removal of nitrogen and phosphorus in urban sewage and simultaneous production of oil-rich biomass by Nannochloropsis sp.[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2367-2374. doi: 10.12030/j.cjee.201412229

利用微拟球藻去除污水中氮磷及生产富油生物质

  • 基金项目:

    山东省中青年科学家科研奖励基金项目(BS2011NJ018)

    教育部新世纪优秀人才支持计划(NCET-12-0501)

  • 中图分类号: X52

Removal of nitrogen and phosphorus in urban sewage and simultaneous production of oil-rich biomass by Nannochloropsis sp.

  • Fund Project:
  • 摘要: 为探讨污水深度处理和同步获取产油微藻的可行性,建立光生物反应器,应用微拟球藻去除污水和中水中的氮磷,并分析不同浓度的Fe3+和Zn2+离子对微藻的生长和油脂积累的影响,从而在净化污水的同时培养微藻获得富油生物质。结果表明,该藻对污水氮磷具有较强的去除能力,可在13 d内,去除水体中96%的氨氮和94%的磷,同时化学需要氧量(COD)的去除率可达72.9%。在生活污水中培养至第16天,微藻的细胞密度可达4.55×106 cell/mL。Fe3+浓度对微拟球藻的生长具有显著影响(P6 cell/mL。该研究以中水和生活污水为基质培养微拟球藻,同时获取微藻油脂,为污水中氮磷的去除和能源的同步获取提供了新途径。
  • 加载中
  • [1] 夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展. 中国生物工程杂志, 2009, 29(7): 118-126 Xia Jinlan, Wan Minxi, Wang Runmin, et al. Current status and progress of microalgal biodiesel. China Biotechnology, 2009, 29(7): 118-126(in Chinese)
    [2] Lewis N. S., Nocera D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 103(43): 15729-15735
    [3] 郑洪立, 张齐, 马小琛, 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009, 29(3): 110-116 Zheng Hongli, Zhang Qi, Ma Xiaochen, et al. Research progress on bio-diesel-producing microalgae cultivation. China Biotechnology, 2009, 29(3): 110-116(in Chinese)
    [4] Chen F., Johns M. R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 1991, 3(3): 203-209
    [5] Suen Y., Hubbard J. S., Holzer G., et al. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. Journal of Phycology, 1987, 23(S2): 289-296
    [6] Liu Zhiyuan, Wang Guangce, Zhou Baicheng. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 2008, 99(11): 4717-4722
    [7] Guillard R. R., Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, 8(2): 229-239
    [8] White T. J., Bruns T., Lee S., et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Quide to Methods and Applications, 1990,18(1):315-322
    [9] Tamura K., Dudley J., Nei M., et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599
    [10] Kong Qingxue, Li Ling, Martinez B., et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 2010, 160(1): 9-18
    [11] Chen Wei, Zhang Chengwu, Song Lirong, et al. A high throughput nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009, 77(1): 41-47
    [12] Hibberd D. J. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of the Linnean Society, 1981, 82(2): 93-119
    [13] Lubzens E., Gibson O., Zmora O., et al. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture, 1995,133(3-4): 295-309
    [14] Zou Ning, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. Journal of Biotechnology, 1999, 70(1-3): 351-356
    [15] Hu Hanhua, Gao Kunshan. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 2003, 25(5): 421-425
    [16] Kolber Z., Zehr J., Falkowski P. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 1988, 88(3): 923-929
    [17] Lodi A., Binaghi L., Solisio C., et al. Nitrate and phosphate removal by Spirulina platensis. Journal of Industrial Microbiology and Biotechnology, 2003, 30(11): 656-660
    [18] Muro-Pastor M. I., Reyes J. C., Florencio F. J. Ammonium assimilation in cyanobacteria. Photosynthesis Research, 2005, 83(2): 135-150
    [19] Chen Li, Liang Wenyan, Wang Jinli, et al. Influence of iron to the growth and toxin production of microcystis aeruginosa. Journal of Safety and Environment, 2009, 9(4): 21-24
    [20] Kosakowska A., Nedzi M., Pempkowiak J. Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances. Plant Physiology and Biochemistry, 2007, 45(5): 365-370
    [21] 刘志媛, 王广策. 铁促进海水小球藻油脂积累的动态过程. 海洋科学, 2008, 32(11): 56-59 Liu Zhiyuan, Wang Guangce. Dynamics of lipid accumulation in marine microalga Chlorella vulgaris promoted by iron. Marine Sciences, 2008, 32(11): 56-59(in Chinese)
    [22] 张宜峰, 康瑞娟, 丛威, 等. 光生物反应器中光强和Fe3+浓度对铜绿微囊藻生长和毒素合成的影响. 过程工程学报, 2007, 7(6): 1192-1196 Zhang Yifeng, Kang Ruijuan, Cong Wei, et al. Effects of light intensity and Fe3+ concentration on Microcystis aeruginosa growth and microcystin production in a photobioreactor. The Chinese Journal of Process Engineering, 2007, 7(6): 1192-1196(in Chinese)
    [23] Utkilen H., Gjlme N. Iron-stimulated toxin production in Microcystis aeruginosa. Applied and Environmental Microbiology, 1995,61(2): 797-800
    [24] Garbayo I., Vigara A. J., Conchon V., et al. Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochemistry, 2000, 36(5): 459-466
    [25] Silva-Benavides A. M., Torzillo G. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology, 2012, 24(2): 267-276
    [26] Wang Bei, Lan C. Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology, 2011, 102(10): 5639-5644
    [27] Valderrama L. T., Del Campo C. M., Rodriguez C. M., et al. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and macrophyte Lemna minuscula. Water Research, 2002, 36(17): 4185-4192
  • 加载中
计量
  • 文章访问数:  1341
  • HTML全文浏览数:  900
  • PDF下载数:  636
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-11
  • 刊出日期:  2016-06-03

利用微拟球藻去除污水中氮磷及生产富油生物质

  • 1.  中国海洋大学环境科学与工程学院, 青岛 266100
  • 2.  海洋环境与生态教育部重点实验室, 青岛 266100
基金项目:

山东省中青年科学家科研奖励基金项目(BS2011NJ018)

教育部新世纪优秀人才支持计划(NCET-12-0501)

摘要: 为探讨污水深度处理和同步获取产油微藻的可行性,建立光生物反应器,应用微拟球藻去除污水和中水中的氮磷,并分析不同浓度的Fe3+和Zn2+离子对微藻的生长和油脂积累的影响,从而在净化污水的同时培养微藻获得富油生物质。结果表明,该藻对污水氮磷具有较强的去除能力,可在13 d内,去除水体中96%的氨氮和94%的磷,同时化学需要氧量(COD)的去除率可达72.9%。在生活污水中培养至第16天,微藻的细胞密度可达4.55×106 cell/mL。Fe3+浓度对微拟球藻的生长具有显著影响(P6 cell/mL。该研究以中水和生活污水为基质培养微拟球藻,同时获取微藻油脂,为污水中氮磷的去除和能源的同步获取提供了新途径。

English Abstract

参考文献 (27)

目录

/

返回文章
返回