[1] |
夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展. 中国生物工程杂志, 2009, 29(7): 118-126 Xia Jinlan, Wan Minxi, Wang Runmin, et al. Current status and progress of microalgal biodiesel. China Biotechnology, 2009, 29(7): 118-126(in Chinese)
|
[2] |
Lewis N. S., Nocera D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 103(43): 15729-15735
|
[3] |
郑洪立, 张齐, 马小琛, 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009, 29(3): 110-116 Zheng Hongli, Zhang Qi, Ma Xiaochen, et al. Research progress on bio-diesel-producing microalgae cultivation. China Biotechnology, 2009, 29(3): 110-116(in Chinese)
|
[4] |
Chen F., Johns M. R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 1991, 3(3): 203-209
|
[5] |
Suen Y., Hubbard J. S., Holzer G., et al. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. Journal of Phycology, 1987, 23(S2): 289-296
|
[6] |
Liu Zhiyuan, Wang Guangce, Zhou Baicheng. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 2008, 99(11): 4717-4722
|
[7] |
Guillard R. R., Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, 8(2): 229-239
|
[8] |
White T. J., Bruns T., Lee S., et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Quide to Methods and Applications, 1990,18(1):315-322
|
[9] |
Tamura K., Dudley J., Nei M., et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599
|
[10] |
Kong Qingxue, Li Ling, Martinez B., et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 2010, 160(1): 9-18
|
[11] |
Chen Wei, Zhang Chengwu, Song Lirong, et al. A high throughput nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009, 77(1): 41-47
|
[12] |
Hibberd D. J. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Botanical Journal of the Linnean Society, 1981, 82(2): 93-119
|
[13] |
Lubzens E., Gibson O., Zmora O., et al. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture, 1995,133(3-4): 295-309
|
[14] |
Zou Ning, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. Journal of Biotechnology, 1999, 70(1-3): 351-356
|
[15] |
Hu Hanhua, Gao Kunshan. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 2003, 25(5): 421-425
|
[16] |
Kolber Z., Zehr J., Falkowski P. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 1988, 88(3): 923-929
|
[17] |
Lodi A., Binaghi L., Solisio C., et al. Nitrate and phosphate removal by Spirulina platensis. Journal of Industrial Microbiology and Biotechnology, 2003, 30(11): 656-660
|
[18] |
Muro-Pastor M. I., Reyes J. C., Florencio F. J. Ammonium assimilation in cyanobacteria. Photosynthesis Research, 2005, 83(2): 135-150
|
[19] |
Chen Li, Liang Wenyan, Wang Jinli, et al. Influence of iron to the growth and toxin production of microcystis aeruginosa. Journal of Safety and Environment, 2009, 9(4): 21-24
|
[20] |
Kosakowska A., Nedzi M., Pempkowiak J. Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances. Plant Physiology and Biochemistry, 2007, 45(5): 365-370
|
[21] |
刘志媛, 王广策. 铁促进海水小球藻油脂积累的动态过程. 海洋科学, 2008, 32(11): 56-59 Liu Zhiyuan, Wang Guangce. Dynamics of lipid accumulation in marine microalga Chlorella vulgaris promoted by iron. Marine Sciences, 2008, 32(11): 56-59(in Chinese)
|
[22] |
张宜峰, 康瑞娟, 丛威, 等. 光生物反应器中光强和Fe3+浓度对铜绿微囊藻生长和毒素合成的影响. 过程工程学报, 2007, 7(6): 1192-1196 Zhang Yifeng, Kang Ruijuan, Cong Wei, et al. Effects of light intensity and Fe3+ concentration on Microcystis aeruginosa growth and microcystin production in a photobioreactor. The Chinese Journal of Process Engineering, 2007, 7(6): 1192-1196(in Chinese)
|
[23] |
Utkilen H., Gjlme N. Iron-stimulated toxin production in Microcystis aeruginosa. Applied and Environmental Microbiology, 1995,61(2): 797-800
|
[24] |
Garbayo I., Vigara A. J., Conchon V., et al. Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochemistry, 2000, 36(5): 459-466
|
[25] |
Silva-Benavides A. M., Torzillo G. Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. Journal of Applied Phycology, 2012, 24(2): 267-276
|
[26] |
Wang Bei, Lan C. Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology, 2011, 102(10): 5639-5644
|
[27] |
Valderrama L. T., Del Campo C. M., Rodriguez C. M., et al. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and macrophyte Lemna minuscula. Water Research, 2002, 36(17): 4185-4192
|