[1]
|
Wang J. L., Quan X. C., Han L, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Research, 2002, 36(9): 2288-2296
Google Scholar
Pub Med
|
[2]
|
Matoic' M., Prstec I., Jakopovic' H.K., et al. Treatment of beverage production wastewater by membrane bioreactor. Desalination, 2009, 246(1-3): 285-293
Google Scholar
Pub Med
|
[3]
|
Liu H. B., Yang C. Z., Pu W. H., et al. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chemical Engineering Journal, 2008, 140(1-3): 122-129
Google Scholar
Pub Med
|
[4]
|
Luostarinen S., Luste S., Valentin L., et al. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Research, 2006, 40(8): 1607-1615
Google Scholar
Pub Med
|
[5]
|
Brumly W. C., Brownrigg C. M., Brilis G. M. Characterization of nitrogencontaining aromatic compounds in soil and sediment by capillary gas chromatography-mass spectrometry after fractionation. Journal of Chromatography A, 1991, 558(1): 223-233
Google Scholar
Pub Med
|
[6]
|
Bai Y., Sun Q., Xing R., et al. Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite. Journal of Hazardous Materials, 2010, 181 (1-3): 916-922
Google Scholar
Pub Med
|
[7]
|
LaVoie E. J., Shigematsu A., Adams E. A., et al. Tumor initiatingactivity of quinoline and methylated quinolines on the skin of SENCAR mice. Cancer Letters, 1984, 22(3): 269-273
Google Scholar
Pub Med
|
[8]
|
Qiao L., Wang J., Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresource Technology, 2010, 101(19): 7683-7686
Google Scholar
Pub Med
|
[9]
|
Vico L.I., Acebal S.G. Some aspects about the adsorption of quinoline on fibrous silicates and Patagonian saponite. Applied Clay Science, 2006, 33(2): 142-148
Google Scholar
Pub Med
|
[10]
|
Chen S. H., Lv B. L., Xu Y. Fe-quinoline complexes sensitized Si-doped TiO2 with enhanced visible light photocatalytic activity. Materials Letters, 2012, 77: 32-34
Google Scholar
Pub Med
|
[11]
|
Nedoloujko A., Kiwi J. Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated processes. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110(2): 149-157
Google Scholar
Pub Med
|
[12]
|
Cui M. C., Chen F. Z., Fu J. M., et al. Microbial metabolism of quinoline by Comamonas sp. World Journal of Microbiology and Biotechnology, 2004, 20(6): 539-543
Google Scholar
Pub Med
|
[13]
|
Wang J. L., Han L. P., Shi H. C., et al.. Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere, 2001, 44(5): 1041-1046
Google Scholar
Pub Med
|
[14]
|
Cui M.C., Chen F.Z., Fu J.M., et al. Microbial metabolism of quinoline by Comamonas sp. World Journal of Microbiology and Biotechnology, 2004, 20(6): 539-543
Google Scholar
Pub Med
|
[15]
|
Sun Q. H., Bai Y. H., Zhao C., et al. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Bioresource Technology, 2009, 100(21): 5030-5036
Google Scholar
Pub Med
|
[16]
|
Tuo B. H, Yan J. B., Fan B. A., et al. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresouce Technology, 2012, 107: 55-60
Google Scholar
Pub Med
|
[17]
|
Zhu S. N., Liu D. Q., Fan L. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. Journal of Hazardous Materials, 2008, 160(2-3): 289-294
Google Scholar
Pub Med
|
[18]
|
Knoop S., Kunst S. Influence of temperature and sludge loading on activated sludge setting, especially on Microthrix parvicella. Water Science and Technology, 1998, 37(4-5): 27-35
Google Scholar
Pub Med
|
[19]
|
Margesin R., Moertelmaier C., Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. International Biodeterioration & Biodegradation. 2012, doi:10.1016/j.ibiod
Google Scholar
Pub Med
|
[20]
|
东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
Google Scholar
Pub Med
|
[21]
|
Buchanan R.E., Gibbons N. E. Bergey’s Manual of Determinative Bacteriology. 8th ed. Baltimore: Williams& Wilikins Company, 1974
Google Scholar
Pub Med
|
[22]
|
Sambrook J., Russell D. W. Molecular Cloning: A Laboratory Manual. (3rd ed.). USA: Cold Spring Harbor Laboratory Press, 2001
Google Scholar
Pub Med
|
[23]
|
张秀霞, 耿春香, 赵朝成, 等, 喹啉降解菌的降解效果考察. 环境工程学报, 2008, 2(1): 88-91 Zhang X.X., Geng C.X., Zhao C.C., et al. Study on degrading effect of quinoline degrading strains. Chinese Journal of Environmental Engineering, 2008, 2(1): 88-91(in Chinese)
Google Scholar
Pub Med
|
[24]
|
崔明超, 李丽, 陈繁忠. 喹啉及其衍生物微生物降解研究进展. 上海环境科学, 2003, 22(1): 52-54 Cui M.C., Li L., Chen F.Z. Study progresson biodegradation of quinoline and its derivatives. Shanghai Environmental Sciences, 2003, 22(1): 52-54 (in Chinese)
Google Scholar
Pub Med
|
[25]
|
岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社, 2000. 134-138
Google Scholar
Pub Med
|