[1]
|
JANKOVIĆ N Z, PLATA D L. Engineered nanomaterials in the context of global element cycles [J]. Environmental Science:Nano, 2019, 6(9): 2697-2711. doi: 10.1039/C9EN00322C
CrossRef Google Scholar
Pub Med
|
[2]
|
KELLER A A, LAZAREVA A. Predicted releases of engineered nanomaterials: From global to regional to local [J]. Environmental Science & Technology Letters, 2014, 1(1): 65-70.
Google Scholar
Pub Med
|
[3]
|
LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities [J]. Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003
CrossRef Google Scholar
Pub Med
|
[4]
|
TRIPATHI D K, SHWETA, SINGH S, et al. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity [J]. Plant Physiology and Biochemistry, 2017, 110: 2-12. doi: 10.1016/j.plaphy.2016.07.030
CrossRef Google Scholar
Pub Med
|
[5]
|
VELICOGNA J R, RITCHIE E E, SCROGGINS R P, et al. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils [J]. Nanotoxicology, 2016, 10(8): 1144-1151. doi: 10.1080/17435390.2016.1181807
CrossRef Google Scholar
Pub Med
|
[6]
|
RICO C M, MAJUMDAR S, DUARTE-GARDEA M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3485-3498. doi: 10.1021/jf104517j
CrossRef Google Scholar
Pub Med
|
[7]
|
HOU W C, WESTERHOFF P, POSNER J D. Biological accumulation of engineered nanomaterials: A review of current knowledge [J]. Environmental Science:Processes & Impacts, 2013, 15(1): 103-122.
Google Scholar
Pub Med
|
[8]
|
REN X Y, ZENG G M, TANG L, et al. Effect of exogenous carbonaceous materials on the bioavailability of organic pollutants and their ecological risks [J]. Soil Biology and Biochemistry, 2018, 116: 70-81. doi: 10.1016/j.soilbio.2017.09.027
CrossRef Google Scholar
Pub Med
|
[9]
|
BAGHAIE A H, JABARI A G. Effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic contaminated soil under barley cultivation [J]. Journal of Environmental Health Science and Engineering, 2019, 17(2): 853-861. doi: 10.1007/s40201-019-00402-w
CrossRef Google Scholar
Pub Med
|
[10]
|
CUI X Y, JIA F, CHEN Y X, et al. Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment [J]. Ecotoxicology, 2011, 20(6): 1277-1285. doi: 10.1007/s10646-011-0684-3
CrossRef Google Scholar
Pub Med
|
[11]
|
WANG X L, LIU Y, ZHANG H Y, et al. The impact of carbon nanotubes on bioaccumulation and translocation of phenanthrene, 3-CH3-phenanthrene and 9-NO2-phenanthrene in maize (Zea mays) seedlings [J]. Environmental Science:Nano, 2016, 3(4): 818-829. doi: 10.1039/C6EN00012F
CrossRef Google Scholar
Pub Med
|
[12]
|
LI B, ZHU H K, SUN H W, et al. Effects of the amendment of biochars and carbon nanotubes on the bioavailability of hexabromocyclododecanes (HBCDs) in soil to ecologically different species of earthworms [J]. Environmental Pollution, 2017, 222: 191-200. doi: 10.1016/j.envpol.2016.12.057
CrossRef Google Scholar
Pub Med
|
[13]
|
UZU G, SOBANSKA S, SARRET G, et al. Foliar lead uptake by lettuce exposed to atmospheric fallouts [J]. Environmental Science & Technology, 2010, 44(3): 1036-1042.
Google Scholar
Pub Med
|
[14]
|
HATAMI M, KARIMAN K, GHORBANPOUR M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants [J]. Science of the Total Environment, 2016, 571: 275-291. doi: 10.1016/j.scitotenv.2016.07.184
CrossRef Google Scholar
Pub Med
|
[15]
|
LIU Q L, CHEN B, WANG Q L, et al. Carbon nanotubes as molecular transporters for walled plant cells [J]. Nano Letters, 2009, 9(3): 1007-1010. doi: 10.1021/nl803083u
CrossRef Google Scholar
Pub Med
|
[16]
|
LARUE C, PINAULT M, CZARNY B, et al. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed [J]. Journal of Hazardous Materials, 2012, 227/228: 155-163. doi: 10.1016/j.jhazmat.2012.05.033
CrossRef Google Scholar
Pub Med
|
[17]
|
LARUE C, LAURETTE J, HERLIN-BOIME N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp. ): Influence of diameter and crystal phase [J]. Science of the Total Environment, 2012, 431: 197-208. doi: 10.1016/j.scitotenv.2012.04.073
CrossRef Google Scholar
Pub Med
|
[18]
|
KOLE C, KOLE P, RANDUNU K M, et al. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia) [J]. BMC Biotechnology, 2013, 13: 37. doi: 10.1186/1472-6750-13-37
CrossRef Google Scholar
Pub Med
|
[19]
|
MIRALLES P, JOHNSON E, CHURCH T L, et al. Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake [J]. Journal of the Royal Society Interface, 2012, 9(77): 3514-3527. doi: 10.1098/rsif.2012.0535
CrossRef Google Scholar
Pub Med
|
[20]
|
MALEJKO J, GODLEWSKA-ŻYŁKIEWICZ B, VANEK T, et al. Uptake, translocation, weathering and speciation of gold nanoparticles in potato, radish, carrot and lettuce crops [J]. Journal of Hazardous Materials, 2021, 418: 126219. doi: 10.1016/j.jhazmat.2021.126219
CrossRef Google Scholar
Pub Med
|
[21]
|
LV J, CHRISTIE P, ZHANG S Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges [J]. Environmental Science:Nano, 2019, 6(1): 41-59. doi: 10.1039/C8EN00645H
CrossRef Google Scholar
Pub Med
|
[22]
|
LI C C, DANG F, LI M, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice [J]. Nanotoxicology, 2017, 11(5): 699-709. doi: 10.1080/17435390.2017.1344740
CrossRef Google Scholar
Pub Med
|
[23]
|
BEGUM P, IKHTIARI R, FUGETSU B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce [J]. Carbon, 2011, 49(12): 3907-3919. doi: 10.1016/j.carbon.2011.05.029
CrossRef Google Scholar
Pub Med
|
[24]
|
PRADAS del REAL A E, CASTILLO-MICHEL H, KAEGI R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils [J]. Environmental Science & Technology, 2016, 50(4): 1759-1768.
Google Scholar
Pub Med
|
[25]
|
HERNANDEZ-VIEZCAS J A, CASTILLO-MICHEL H, ANDREWS J C, et al. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max) [J]. ACS Nano, 2013, 7(2): 1415-1423. doi: 10.1021/nn305196q
CrossRef Google Scholar
Pub Med
|
[26]
|
DIMKPA C O, LATTA D E, MCLEAN J E, et al. Fate of CuO and ZnO nano- and microparticles in the plant environment [J]. Environmental Science & Technology, 2013, 47(9): 4734-4742.
Google Scholar
Pub Med
|
[27]
|
WANG P, MENZIES N W, LOMBI E, et al. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata) [J]. Environmental Science & Technology, 2013, 47(23): 13822-13830.
Google Scholar
Pub Med
|
[28]
|
WANG P, MENZIES N W, LOMBI E, et al. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic [J]. Nanotoxicology, 2015, 9(8): 1041-1049. doi: 10.3109/17435390.2014.999139
CrossRef Google Scholar
Pub Med
|
[29]
|
LIN S J, REPPERT J, HU Q, et al. Uptake, translocation, and transmission of carbon nanomaterials in rice plants [J]. Small, 2009, 5(10): 1128-1132.
Google Scholar
Pub Med
|
[30]
|
TRIPATHI S, KAPRI S, DATTA A, et al. Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant [J]. RSC Advances, 2016, 6(50): 43864-43873. doi: 10.1039/C6RA01163B
CrossRef Google Scholar
Pub Med
|
[31]
|
UNRINE J M, TSYUSKO O V, HUNYADI S E, et al. Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles [J]. Journal of Environmental Quality, 2010, 39(6): 1942-1953. doi: 10.2134/jeq2009.0387
CrossRef Google Scholar
Pub Med
|
[32]
|
LI D, FORTNER J D, JOHNSON D R, et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida [J]. Environmental Science & Technology, 2010, 44(23): 9170-9175.
Google Scholar
Pub Med
|
[33]
|
HOOPER H L, JURKSCHAT K, MORGAN A J, et al. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix [J]. Environment International, 2011, 37(6): 1111-1117. doi: 10.1016/j.envint.2011.02.019
CrossRef Google Scholar
Pub Med
|
[34]
|
PETERSEN E J, HUANG Q G, WEBER J. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida [J]. Environmental Science & Technology, 2008, 42(8): 3090-3095.
Google Scholar
Pub Med
|
[35]
|
OUGHTON D H, HERTEL-AAS T, PELLICER E, et al. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1883-1887. doi: 10.1897/07-578.1
CrossRef Google Scholar
Pub Med
|
[36]
|
LAPIED E, NAHMANI J Y, MOUDILOU E, et al. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil [J]. Environment International, 2011, 37(6): 1105-1110. doi: 10.1016/j.envint.2011.01.009
CrossRef Google Scholar
Pub Med
|
[37]
|
BACCARO M, van den BERG J H J, van den BRINK N W. Are long-term exposure studies needed?Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months [J]. Ecotoxicology and Environmental Safety, 2021, 220: 112371. doi: 10.1016/j.ecoenv.2021.112371
CrossRef Google Scholar
Pub Med
|
[38]
|
COURTOIS P, RORAT A, LEMIERE S, et al. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals [J]. Environmental Pollution, 2019, 253: 578-598. doi: 10.1016/j.envpol.2019.07.053
CrossRef Google Scholar
Pub Med
|
[39]
|
LI S B, IRIN F, ATORE F O, et al. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique [J]. Science of the Total Environment, 2013, 445/446: 9-13. doi: 10.1016/j.scitotenv.2012.12.037
CrossRef Google Scholar
Pub Med
|
[40]
|
王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展 [J]. 环境科学, 2010, 31(6): 1409-1418. doi: 10.13227/j.hjkx.2010.06.018
WANG Z Y, ZHAO J, LI N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms [J]. Environmental Science, 2010, 31(6): 1409-1418(in Chinese). doi: 10.13227/j.hjkx.2010.06.018
CrossRef Google Scholar
Pub Med
|
[41]
|
SCHWAB F, ZHAI G S, KERN M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review [J]. Nanotoxicology, 2016, 10(3): 257-278. doi: 10.3109/17435390.2015.1048326
CrossRef Google Scholar
Pub Med
|
[42]
|
JIANG W, WANG Q, QU X L, et al. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes [J]. Science of the Total Environment, 2017, 574: 771-780. doi: 10.1016/j.scitotenv.2016.09.150
CrossRef Google Scholar
Pub Med
|
[43]
|
LIU Q L, ZHAO Y Y, WAN Y L, et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level [J]. ACS Nano, 2010, 4(10): 5743-5748. doi: 10.1021/nn101430g
CrossRef Google Scholar
Pub Med
|
[44]
|
BEGUM P, FUGETSU B. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions [J]. Journal of Hazardous Materials, 2013, 260: 1032-1041. doi: 10.1016/j.jhazmat.2013.06.063
CrossRef Google Scholar
Pub Med
|
[45]
|
PATLOLLA A K, BERRY A, MAY L, et al. Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles [J]. International Journal of Environmental Research and Public Health, 2012, 9(5): 1649-1662. doi: 10.3390/ijerph9051649
CrossRef Google Scholar
Pub Med
|
[46]
|
BARBOLINA I, WOODS C R, LOZANO N, et al. Purity of graphene oxide determines its antibacterial activity [J]. 2D Materials, 2016, 3(2): 025025. doi: 10.1088/2053-1583/3/2/025025
CrossRef Google Scholar
Pub Med
|
[47]
|
DIMKPA C O, MCLEAN J E, LATTA D E, et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat [J]. Journal of Nanoparticle Research, 2012, 14(9): 1125. doi: 10.1007/s11051-012-1125-9
CrossRef Google Scholar
Pub Med
|
[48]
|
KARLSSON H L, CRONHOLM P, GUSTAFSSON J, et al. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes [J]. Chemical Research in Toxicology, 2008, 21(9): 1726-1732. doi: 10.1021/tx800064j
CrossRef Google Scholar
Pub Med
|
[49]
|
DENG R, LIN D H, ZHU L Z, et al. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk [J]. Nanotoxicology, 2017, 11(5): 591-612. doi: 10.1080/17435390.2017.1343404
CrossRef Google Scholar
Pub Med
|
[50]
|
YU S J, LIU J F, YIN Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects [J]. Journal of Environmental Sciences, 2018, 63: 198-217. doi: 10.1016/j.jes.2017.06.021
CrossRef Google Scholar
Pub Med
|
[51]
|
BAI Y, WANG C Y, GAO J J, et al. A study on dispersion and antibacterial activity of functionalizing multi-walled carbon nanotubes with mixed surfactant [J]. Journal of Surfactants and Detergents, 2015, 18(6): 957-964. doi: 10.1007/s11743-015-1729-z
CrossRef Google Scholar
Pub Med
|
[52]
|
BAI Y, PARK I S, LEE S J, et al. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity [J]. Colloids and Surfaces B:Biointerfaces, 2012, 89: 101-107. doi: 10.1016/j.colsurfb.2011.09.001
CrossRef Google Scholar
Pub Med
|
[53]
|
MAURER-JONES M A, GUNSOLUS I L, MURPHY C J, et al. Toxicity of engineered nanoparticles in the environment [J]. Analytical Chemistry, 2013, 85(6): 3036-3049. doi: 10.1021/ac303636s
CrossRef Google Scholar
Pub Med
|
[54]
|
LIU S B, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress [J]. ACS Nano, 2011, 5(9): 6971-6980. doi: 10.1021/nn202451x
CrossRef Google Scholar
Pub Med
|
[55]
|
ARIAS L R, YANG L J. Inactivation of bacterial pathogens by carbon nanotubes in suspensions [J]. Langmuir, 2009, 25(5): 3003-3012. doi: 10.1021/la802769m
CrossRef Google Scholar
Pub Med
|
[56]
|
AUFFAN M, ACHOUAK W, ROSE J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 2008, 42(17): 6730-6735.
Google Scholar
Pub Med
|
[57]
|
SIMONIN M, RICHAUME A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review [J]. Environmental Science and Pollution Research, 2015, 22(18): 13710-13723. doi: 10.1007/s11356-015-4171-x
CrossRef Google Scholar
Pub Med
|
[58]
|
ZHANG H Y, WU F, CHEN W X, et al. Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil [J]. NanoImpact, 2018, 11: 146-155. doi: 10.1016/j.impact.2018.08.001
CrossRef Google Scholar
Pub Med
|
[59]
|
REN W J, REN G D, TENG Y, et al. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community [J]. Journal of Hazardous Materials, 2015, 297: 286-294. doi: 10.1016/j.jhazmat.2015.05.017
CrossRef Google Scholar
Pub Med
|
[60]
|
CHUNG H, KIM M J, KO K, et al. Effects of graphene oxides on soil enzyme activity and microbial biomass [J]. Science of the Total Environment, 2015, 514: 307-313. doi: 10.1016/j.scitotenv.2015.01.077
CrossRef Google Scholar
Pub Med
|
[61]
|
JIN L X, SON Y, YOON T K, et al. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass [J]. Ecotoxicology and Environmental Safety, 2013, 88: 9-15. doi: 10.1016/j.ecoenv.2012.10.031
CrossRef Google Scholar
Pub Med
|
[62]
|
KUMAR N, SHAH V, WALKER V K. Perturbation of an arctic soil microbial community by metal nanoparticles [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 816-822.
Google Scholar
Pub Med
|
[63]
|
GE Y, SCHIMEL J P, HOLDEN P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities [J]. Environmental Science & Technology, 2011, 45(4): 1659-1664.
Google Scholar
Pub Med
|
[64]
|
SHAN J, JI R, YU Y J, et al. Biochar, activated carbon and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil [J]. Scientific Reports, 2015, 5: 16000. doi: 10.1038/srep16000
CrossRef Google Scholar
Pub Med
|
[65]
|
CHUNG H, SON Y, YOON T K, et al. The effect of multi-walled carbon nanotubes on soil microbial activity [J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 569-575. doi: 10.1016/j.ecoenv.2011.01.004
CrossRef Google Scholar
Pub Med
|
[66]
|
WU F, YOU Y Q, ZHANG X Y, et al. Effects of various carbon nanotubes on soil bacterial community composition and structure [J]. Environmental Science & Technology, 2019, 53(10): 5707-5716.
Google Scholar
Pub Med
|
[67]
|
BEGUM P, FUGETSU B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant [J]. Journal of Hazardous Materials, 2012, 243: 212-222. doi: 10.1016/j.jhazmat.2012.10.025
CrossRef Google Scholar
Pub Med
|
[68]
|
MA X M, GEISER-LEE J, DENG Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation [J]. Science of the Total Environment, 2010, 408(16): 3053-3061. doi: 10.1016/j.scitotenv.2010.03.031
CrossRef Google Scholar
Pub Med
|
[69]
|
GEISLER-LEE J, WANG Q, YAO Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana [J]. Nanotoxicology, 2012, 7(3): 323-337. doi: 10.3109/17435390.2012.658094
CrossRef Google Scholar
Pub Med
|
[70]
|
LIN D H, XING B S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth [J]. Environmental Pollution, 2007, 150(2): 243-250. doi: 10.1016/j.envpol.2007.01.016
CrossRef Google Scholar
Pub Med
|
[71]
|
ASLI S, NEUMANN P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J]. Plant, Cell & Environment, 2009, 32(5): 577-584.
Google Scholar
Pub Med
|
[72]
|
KHODAKOVSKAYA M V, de SILVA K, BIRIS A S, et al. Carbon nanotubes induce growth enhancement of tobacco cells [J]. ACS Nano, 2012, 6(3): 2128-2135. doi: 10.1021/nn204643g
CrossRef Google Scholar
Pub Med
|
[73]
|
WANG X P, HAN H Y, LIU X Q, et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants [J]. Journal of Nanoparticle Research, 2012, 14(6): 841. doi: 10.1007/s11051-012-0841-5
CrossRef Google Scholar
Pub Med
|
[74]
|
HUSEN A, SIDDIQI K S. Carbon and fullerene nanomaterials in plant system [J]. Journal of Nanobiotechnology, 2014, 12: 16. doi: 10.1186/1477-3155-12-16
CrossRef Google Scholar
Pub Med
|
[75]
|
HU X G, LU K C, MU L, et al. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders [J]. Carbon, 2014, 80: 665-676. doi: 10.1016/j.carbon.2014.09.010
CrossRef Google Scholar
Pub Med
|
[76]
|
YIN L Y, CHENG Y W, ESPINASSE B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum [J]. Environmental Science & Technology, 2011, 45(6): 2360-2367.
Google Scholar
Pub Med
|
[77]
|
HU X G, ZHOU Q X. Health and ecosystem risks of graphene [J]. Chemical Reviews, 2013, 113(5): 3815-3835. doi: 10.1021/cr300045n
CrossRef Google Scholar
Pub Med
|
[78]
|
YANG K, WAN J M, ZHANG S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power [J]. Biomaterials, 2012, 33(7): 2206-2214. doi: 10.1016/j.biomaterials.2011.11.064
CrossRef Google Scholar
Pub Med
|
[79]
|
ZHANG L J, HU C W, WANG W L, et al. Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida [J]. Ecotoxicology and Environmental Safety, 2014, 103: 29-35. doi: 10.1016/j.ecoenv.2014.01.041
CrossRef Google Scholar
Pub Med
|
[80]
|
WANG J F, WAGES M, YU S Y, et al. Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus [J]. Environmental Toxicology and Chemistry, 2014, 33(5): 1135-1141. doi: 10.1002/etc.2540
CrossRef Google Scholar
Pub Med
|
[81]
|
CALISI A, GRIMALDI A, LEOMANNI A, et al. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity [J]. Ecotoxicology, 2016, 25(4): 677-687. doi: 10.1007/s10646-016-1626-x
CrossRef Google Scholar
Pub Med
|
[82]
|
van der PLOEG M J C, HANDY R D, HECKMANN L H, et al. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus [J]. Nanotoxicology, 2013, 7(4): 432-440. doi: 10.3109/17435390.2012.668569
CrossRef Google Scholar
Pub Med
|
[83]
|
LANKADURAI B P, NAGATO E G, SIMPSON A J, et al. Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics [J]. Ecotoxicology and Environmental Safety, 2015, 120: 48-58. doi: 10.1016/j.ecoenv.2015.05.020
CrossRef Google Scholar
Pub Med
|
[84]
|
WANG H H, WICK R L, XING B S. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans [J]. Environmental Pollution, 2009, 157(4): 1171-1177. doi: 10.1016/j.envpol.2008.11.004
CrossRef Google Scholar
Pub Med
|
[85]
|
van der PLOEG M J C, BAVECO J M, van der HOUT A, et al. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics [J]. Environmental Pollution, 2011, 159(1): 198-203. doi: 10.1016/j.envpol.2010.09.003
CrossRef Google Scholar
Pub Med
|
[86]
|
MCSHANE H, SARRAZIN M, WHALEN J K, et al. Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil [J]. Environmental Toxicology and Chemistry, 2012, 31(1): 184-193. doi: 10.1002/etc.714
CrossRef Google Scholar
Pub Med
|
[87]
|
ZHANG H Y, VIDONISH J, LV W, et al. Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity [J]. Environmental Pollution, 2020, 263: 114468. doi: 10.1016/j.envpol.2020.114468
CrossRef Google Scholar
Pub Med
|
[88]
|
曹圣来. 典型纳米金属氧化物对不同类型土壤中蚯蚓、小麦的毒性效应[D]. 南京: 南京大学, 2015.
CAO S L. Toxicology of metal oxide nanoparticles on earthworm and wheat in different types of soils[D]. Nanjing: Nanjing University, 2015(in Chinese).
Google Scholar
Pub Med
|
[89]
|
JOHNSEN A R, WICK L Y, HARMS H. Principles of microbial PAH-degradation in soil [J]. Environmental Pollution, 2005, 133(1): 71-84. doi: 10.1016/j.envpol.2004.04.015
CrossRef Google Scholar
Pub Med
|
[90]
|
ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review [J]. Water Research, 2017, 126: 385-398. doi: 10.1016/j.watres.2017.08.010
CrossRef Google Scholar
Pub Med
|
[91]
|
YANG K, XING B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water [J]. Environmental Pollution, 2007, 145(2): 529-537. doi: 10.1016/j.envpol.2006.04.020
CrossRef Google Scholar
Pub Med
|
[92]
|
ZHANG C D, LI M Z, XU X, et al. Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp [J]. Journal of Hazardous Materials, 2015, 287: 1-6. doi: 10.1016/j.jhazmat.2015.01.039
CrossRef Google Scholar
Pub Med
|
[93]
|
SHRESTHA B, ANDERSON T A, ACOSTA-MARTINEZ V, et al. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere [J]. Ecotoxicology and Environmental Safety, 2015, 116: 143-149. doi: 10.1016/j.ecoenv.2015.03.005
CrossRef Google Scholar
Pub Med
|
[94]
|
TOWELL M G, BROWNE L A, PATON G I, et al. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil [J]. Environmental Pollution, 2011, 159(3): 706-715. doi: 10.1016/j.envpol.2010.11.040
CrossRef Google Scholar
Pub Med
|
[95]
|
XIA X H, ZHOU C H, HUANG J H, et al. Mineralization of phenanthrene sorbed on multiwalled carbon nanotubes [J]. Environmental Toxicology and Chemistry, 2013, 32(4): 894-901. doi: 10.1002/etc.2125
CrossRef Google Scholar
Pub Med
|
[96]
|
XIA X H, LI Y R, ZHOU Z, et al. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium [J]. Chemosphere, 2010, 78(11): 1329-1336. doi: 10.1016/j.chemosphere.2010.01.007
CrossRef Google Scholar
Pub Med
|
[97]
|
OYELAMI A O, SEMPLE K T. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil [J]. Environmental Science:Processes & Impacts, 2015, 17(7): 1302-1310.
Google Scholar
Pub Med
|
[98]
|
ZHANG M, SHEN X F, ZHANG H Y, et al. Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials [J]. Carbon, 2016, 110: 404-413. doi: 10.1016/j.carbon.2016.09.044
CrossRef Google Scholar
Pub Med
|
[99]
|
KELSEY J W, WHITE J C. Effect of C60 fullerenes on the accumulation of weathered p, p'-DDE by plant and earthworm species under single and multispecies conditions [J]. Environmental Toxicology and Chemistry, 2013, 32(5): 1117-1123. doi: 10.1002/etc.2158
CrossRef Google Scholar
Pub Med
|
[100]
|
SHEN X F, LI S L, ZHANG H Y, et al. Effect of multiwalled carbon nanotubes on uptake of pyrene by cucumber (Cucumis sativus L.): Mechanistic perspectives [J]. NanoImpact, 2018, 10: 168-176. doi: 10.1016/j.impact.2018.05.001
CrossRef Google Scholar
Pub Med
|
[101]
|
ZHANG H Y, LIU Y, SHEN X F, et al. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings [J]. Environmental Pollution, 2017, 220: 1409-1417. doi: 10.1016/j.envpol.2016.10.093
CrossRef Google Scholar
Pub Med
|
[102]
|
de la TORRE-ROCHE R, HAWTHORNE J, DENG Y Q, et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants [J]. Environmental Science & Technology, 2013, 47(21): 12539-12547.
Google Scholar
Pub Med
|
[103]
|
MA X M, WANG C. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems [J]. Environmental Engineering Science, 2010, 27(11): 989-992. doi: 10.1089/ees.2010.0141
CrossRef Google Scholar
Pub Med
|
[104]
|
de la TORRE-ROCHE R, HAWTHORNE J, DENG Y Q, et al. Fullerene-enhanced accumulation of p, p'-DDE in agricultural crop species [J]. Environmental Science & Technology, 2012, 46(17): 9315-9323.
Google Scholar
Pub Med
|
[105]
|
LIU C Y, JIANG X, MA Y C, et al. Pollutant and soil types influence effectiveness of soil-applied absorbents in reducing rice plant uptake of persistent organic pollutants [J]. Pedosphere, 2017, 27(3): 537-547. doi: 10.1016/S1002-0160(17)60349-7
CrossRef Google Scholar
Pub Med
|
[106]
|
MA C X, LIU H, CHEN G C, et al. Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L. ) [J]. Environmental Science:Nano, 2017, 4(9): 1827-1839. doi: 10.1039/C7EN00280G
CrossRef Google Scholar
Pub Med
|
[107]
|
WU J, XIE Y Y, FANG Z Q, et al. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil [J]. Chemosphere, 2016, 162: 235-242. doi: 10.1016/j.chemosphere.2016.07.101
CrossRef Google Scholar
Pub Med
|
[108]
|
PILLAI H P S, KOTTEKOTTIL J. Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles [J]. Journal of Environmental Protection, 2016, 7(5): 734-744. doi: 10.4236/jep.2016.75066
CrossRef Google Scholar
Pub Med
|
[109]
|
de la TORRE ROCHE R, PAGANO L, MAJUMDAR S, et al. Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): Contaminant bioaccumulation and translocation [J]. NanoImpact, 2018, 11: 136-145. doi: 10.1016/j.impact.2018.07.001
CrossRef Google Scholar
Pub Med
|
[110]
|
WU X, WANG W, ZHU L Z. Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil [J]. Environmental Pollution, 2018, 240: 51-59. doi: 10.1016/j.envpol.2018.04.072
CrossRef Google Scholar
Pub Med
|
[111]
|
BAO Y Y, MA C X, HU L, et al. Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L. ) [J]. Journal of Soils and Sediments, 2019, 19(5): 2459-2471. doi: 10.1007/s11368-018-2216-8
CrossRef Google Scholar
Pub Med
|
[112]
|
PETERSEN E J, PINTO R A, LANDRUM P F, et al. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms [J]. Environmental Science & Technology, 2009, 43(11): 4181-4187.
Google Scholar
Pub Med
|
[113]
|
ZHANG H Y, CHEN W X, SHEN X F, et al. Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi) [J]. Environmental Science:Nano, 2017, 4(9): 1887-1899. doi: 10.1039/C7EN00118E
CrossRef Google Scholar
Pub Med
|
[114]
|
ZHANG H Y, CHEN W X, ZHANG X Y, et al. Carbon nanomaterials differentially impact bioaccumulation and oxidative response of phenanthrene and methyl derivatives in geophagous earthworms (Metaphire guillelmi): A multi-contaminant exposure study [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6537-6544. doi: 10.1016/j.jece.2018.10.007
CrossRef Google Scholar
Pub Med
|
[115]
|
HU C W, CAI Y, WANG W L, et al. Toxicological effects of multi-walled carbon nanotubes adsorbed with nonylphenol on earthworm Eisenia fetida [J]. Environmental Science:Processes & Impacts, 2013, 15(11): 2125-2130.
Google Scholar
Pub Med
|
[116]
|
ZHU Y, WU X Y, LIU Y X, et al. Synergistic growth inhibition effect of TiO2 nanoparticles and tris(1, 3-dichloro-2-propyl) phosphate on earthworms in soil [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111462. doi: 10.1016/j.ecoenv.2020.111462
CrossRef Google Scholar
Pub Med
|
[117]
|
MUKHERJEE A, HAWTHORNE J, WHITE J C, et al. Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms [J]. Environmental Toxicology and Chemistry, 2017, 36(7): 1864-1871. doi: 10.1002/etc.3698
CrossRef Google Scholar
Pub Med
|
[118]
|
LI M, XU G H, GUO N, et al. Influences and mechanisms of nanoparticles on pentachloronitrobenzene accumulation by earthworms [J]. Environmental Science and Pollution Research, 2021: 1-9.
Google Scholar
Pub Med
|
[119]
|
LI M, XU G H, YANG X T, et al. Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity [J]. Environmental Pollution, 2020, 263: 114629. doi: 10.1016/j.envpol.2020.114629
CrossRef Google Scholar
Pub Med
|
[120]
|
GARCÍA-GÓMEZ C, BABÍN M, GARCÍA S, et al. Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei [J]. Science of the Total Environment, 2019, 688: 199-207. doi: 10.1016/j.scitotenv.2019.06.083
CrossRef Google Scholar
Pub Med
|
[121]
|
YANG Y, HUNTER W, TAO S, et al. Microbial availability of different forms of phenanthrene in soils [J]. Environmental Science & Technology, 2009, 43(6): 1852-1857.
Google Scholar
Pub Med
|
[122]
|
YANG Y, SHU L, WANG X L, et al. Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene [J]. Environmental Science & Technology, 2010, 44(9): 3339-3344.
Google Scholar
Pub Med
|
[123]
|
CONGIU E, ORTEGA-CALVO J J. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2014, 48(18): 10869-10877.
Google Scholar
Pub Med
|
[124]
|
PACWA-PŁOCINICZAK M, PŁAZA G A, PIOTROWSKA-SEGET Z, et al. Environmental applications of biosurfactants: Recent advances [J]. International Journal of Molecular Sciences, 2011, 12(1): 633-654. doi: 10.3390/ijms12010633
CrossRef Google Scholar
Pub Med
|
[125]
|
KUŚMIERZ M, OLESZCZUK P, KRASKA P, et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil [J]. Chemosphere, 2016, 146: 272-279. doi: 10.1016/j.chemosphere.2015.12.010
CrossRef Google Scholar
Pub Med
|
[126]
|
CÁCERES-WENZEL M I, FUCHS J S, BERNASSANI F N, et al. Combined effects of goethite nanoparticles with metallic contaminants and an organophosphorus pesticide on Eisenia andrei [J]. Environmental Science and Pollution Research, 2020, 27(16): 20066-20075. doi: 10.1007/s11356-020-08547-0
CrossRef Google Scholar
Pub Med
|
[127]
|
ZHANG C, WANG S H, LV Z, et al. NanoFe3O4 accelerates anoxic biodegradation of 3, 5, 6-trichloro-2-pyridinol [J]. Chemosphere, 2019, 235: 185-193. doi: 10.1016/j.chemosphere.2019.06.114
CrossRef Google Scholar
Pub Med
|