[1] |
VELLANKI B P, BATCHELOR B, ABDEL-WAHAB A. Advanced reduction processes:A new class of treatment processes[J]. Environmental Engineering Science, 2013, 30(5):264-271.
|
[2] |
JUNG B, NICOLA R, BATCHELOR B, et al. Effect of low-and medium-pressure Hg UV irradiation on bromate removal in advanced reduction process[J]. Chemosphere, 2014, 117(1):663-672.
|
[3] |
YAN Q, ZHANG C J, FEL L, et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9):2939-2947.
|
[4] |
LI X, MA J, LIU G, et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process[J]. Environmental Science & Technology, 2012, 46(13):7342-7349.
|
[5] |
YU H, NIE E, XU J, et al. Degradation of diclofenac by advanced oxidation and reduction processes:Kinetic studies, degradation pathways and toxicity assessments[J]. Water Research, 2013, 47(5):1909-1918.
|
[6] |
ROSSKY P J, SCHNITKER J. The hydrated electron:Quantum simulation of structure, spectroscopy, and dynamics[J]. The Journal of Physical Chemistry, 1988, 92(15):4277-4285.
|
[7] |
THOMAS-SMITH T E, BLOUGH N V. Photoproduction of hydrated electron from constituents of natural waters[J]. Environmental Science & Technology, 2001, 35(13):2721-2726.
|
[8] |
MEZYK S P, HELGESON T, COLE S K, et al. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water[J]. The Journal of Physical Chemistry, 2006, 110(6):2176-2180.
|
[9] |
JUDSON R, RICHARD A, DIX D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695.
|
[10] |
ZHUANG S L, WANG H F, DING K K, et al. Interactions of benzotriazole UV stabilizers with human serum albumin:Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations[J]. Chemosphere, 2016, 144:1050-1059.
|
[11] |
QU R J, LIU H X, FENG M B, et al. Investigation on intra molecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones[J]. Journal of Chemical & Engineering Data. 2012, 57(9):2442-2455.
|
[12] |
OECD,Guidance doucument on the validation of (quantitative) structure-activity relationships models[R]. OECD, 2007.
|
[13] |
LUO X, YANG X, QIAO X, et al. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals[J]. Environmental Science Processes & Impacts, 2017, 19(3):350-356.
|
[14] |
徐童,陈景文,李超,等. 气相有机化学品与羟基自由基反应速率常数的QSAR模型[J]. 环境化学,2017, 36(4):703-709.
XU T, CHEN J W, LI C, et al. QSAR models for predicting hydroxyl radical reaction rate constants with organic chemicals in the atmosphere[J]. Environmental Chemistry, 2017, 36(4):703-709(in Chinese).
|
[15] |
LEE Y, VON GUNTEN U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19):6177-6195.
|
[16] |
POUTSMA M L. Evolution of structure-reactivity correlations for the hydrogen abstraction reaction by hydroxyl radical and comparison with that by chlorine atom[J]. The Journal of Physical Chemistry A, 2013, 117(30):6433-6449.
|
[17] |
XIAO R, YE T, WEI Z, et al. Quantitative structure-activity relationship(QSAR)for the oxidation of trace organic contaminants by sulfate radical[J]. Environmental Science & Technology, 2015, 49(22):13394-13402.
|
[18] |
LI X, ZHAO W, LI J, et al. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures[J]. Chemosphere, 2013, 92(8):1029-1034.
|
[19] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
|
[20] |
LIU H X, XUE C X, ZHANG R S, et al. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine[J]. Journal of Chemical Information & Computer Scienences, 2004, 44(6):1979-1986.
|
[21] |
YAO X J, PANAYE A, DOUCET J P, et al. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression[J]. Journal of Chemical Information & Computer Sciences, 2004, 44(4):1257-1266.
|
[22] |
REN Y, LIU H, YAO X, et al. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression[J]. Analytica Chimica Acta, 2007, 589(1):150-158.
|
[23] |
LUO S, WEI Z, DIONYSIOU D D, et al. Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway[J]. Chemical Engineering Journal, 2017, 327:1056-1065.
|
[24] |
KARELSON M, LOBANOV V S, KATRIZKY A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews. 1996, 96(3), 1027-1043
|
[25] |
WANG Y, CHEN J, LI X, et al. Estimation of aqueous-phase reaction rate constants of hydroxyl radical with phenols, alkanes and alcohols[J]. Molecular Informatics, 2009, 28(11-12):1309-1316
|
[26] |
TODESCHINI R. DRAGON-Software for Molecular Descriptor Calculations (Version 5.4 for Windows). Milan, Italy:Talete srl, 2006.
|
[27] |
桑兰芬,杨滢,杜秀华,等. 苯、萘、蒽芳烃分子稳定性和分子极化率规律的理论研究[J]. 化学研究与应用,1996, 8(1):70-72.
SANG L F, YANG Y, DU X H. Theoretical study of regularity of stability and polarizability of benzene, naphthalene and anthracene[J]. Chemical Research and Application, 1996, 8(1):70-72(in Chinese).
|