[1] |
BOUCHONNET S, BOURCIER S, SOUISSI Y, et al. GC-MSn and LC-MS/MS couplings for the identification of degradation products resulting from the ozonation treatment of Acetochlor[J]. Journal of Mass Spectrometry, 2012, 47(4):439-452.
|
[2] |
HENRIKSEN T, SVENSMARK B, JUHLER R K. Analysis of metribuzin and transformation products in soil by pressurized liquid extraction and liquid chromatographic-tandem mass spectrometry[J]. Journal of Chromatography A, 2002, 957(1):79-87.
|
[3] |
MALOSCHIK E, ERNST A, HEGEDUS G, et al. Monitoring water-polluting pesticides in Hungary[J]. Microchemical Journal, 2007, 85(1):88-97.
|
[4] |
PETRI B G, THOMSON N R, URNOWICZ M A. Fundamentals of ISCO using permanganate[M]//In Situ Chemical Oxidation for Groundwater Remediation[M]. New York:Springer, 2011:89-146.
|
[5] |
GUAN X, HE D, MA J, et al. Application of permanganate in the oxidation of micro-pollutants:A mini review[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(4):405-413.
|
[6] |
孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学,2017. SUN B. Kinetics and mechanisms on the fast degradation of Micro-Organic contaminants by bisulfite activated permanganate[D]. Harbin:Harbin Institute of Technology, 2017(in Chinese).
|
[7] |
SUN B, GUAN X H, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants:The involvement of Mn(Ⅲ)[J]. Environmental Science Technology 2015, 49:12414-12421.
|
[8] |
GAO Y, JIANG J, ZHOU Y, et al. Does soluble Mn (Ⅲ) oxidant formed in situ account for enhanced transformation of triclosan by Mn (Ⅶ) in the presence of ligands[J]. Environmental Science & Technology, 2018, 52(8):4785-4793.
|
[9] |
GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn (Ⅲ) stabilizing agent in activating permanganate (Mn (Ⅶ)) for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 327:418-422.
|
[10] |
TARTAR H V, GARRETSON H H. The thermodynamic ionization constants of sulfurous acid at 25℃[J]. Journal of the American Chemical Society, 1941, 63(3):808-816.
|
[11] |
LIU C, ZHAO M, HE S, et al. Activation of permanganate with hydrogen sulfite for enhanced oxidation of a typical amino acid[J]. Environmental Technology, doi:10.1080/09593330.2018.1426644.
|
[12] |
WANG A Q, LIN Y L, XU B, et al. Degradation of acrylamide during chlorination as a precursor of haloacetonitriles and haloacetamides[J]. Science of the Total Environment, 2018, 615:38-46.
|
[13] |
FANG J, MA J, YANG X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa[J]. Water Research, 2010, 44(6):1934-1940.
|
[14] |
DING S, CHU W, BOND T, et al. Formation and estimated toxicity of trihalomethanes, haloacetonitriles, and haloacetamides from the chlor (am) ination of acetaminophen[J]. Journal of Hazardous Materials, 2018, 341:112-119.
|
[15] |
YU Y, RECKHOW D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science & Technology, 2015, 49(18):11028-11036.
|
[16] |
ANTONOPOULOU M., KONSTANTINOU I. Photocatalytic treatment of metribuzin herbicide over TiO2aqueoussuspensions:Removal efficiency, identification of transformation products, reaction pathways and ecotoxicity evaluation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2014, 294:110-120.
|
[17] |
KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23):7175-7185.
|
[18] |
PLEWA M J. Charting a new path to resolve the adverse health effects of DBPs//Abstracts of papers of the american chemical society[C]. 115516TH ST, NW, WASHINGTON, DC 20036 USA:AMER CHEMICAL SOC, 2014, 248.
|
[19] |
PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs[J]. Urbana, 2008, 51:36-50.
|
[20] |
HU J, CHU W, SUI M, et al. Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination[J]. Chemical Engineering Journal, 2018, 335:352-361.
|