高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究

杨海燕, 柳婷, 董慧峪, 强志民, 叶桂洪, 李翼, 孙晓博. 高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究[J]. 环境化学, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
引用本文: 杨海燕, 柳婷, 董慧峪, 强志民, 叶桂洪, 李翼, 孙晓博. 高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究[J]. 环境化学, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
YANG Haiyan, LIU Ting, DONG Huiyu, QIANG Zhimin, YE Guihong, LI Yi, SUN Xiaobo. Effects of PM and PM/BS on the degradation of metribuzin and the formation potential of disinfection by-products[J]. Environmental Chemistry, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
Citation: YANG Haiyan, LIU Ting, DONG Huiyu, QIANG Zhimin, YE Guihong, LI Yi, SUN Xiaobo. Effects of PM and PM/BS on the degradation of metribuzin and the formation potential of disinfection by-products[J]. Environmental Chemistry, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602

高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究

  • 基金项目:

    国家自然科学基金(51525806)和水体污染控制与治理科技重大专项(2017ZX07207-004)资助.

Effects of PM and PM/BS on the degradation of metribuzin and the formation potential of disinfection by-products

  • Fund Project: Supported by the National Natural Science Foundation of China(51525806)and Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07207-004).
  • 摘要: 本文研究了不同pH条件下高锰酸钾/亚硫酸氢钠(PM/BS)对农药嗪草酮(MET)的氧化降解,预氧化后续氯化过程中消毒副产物(DBPs)的变化和毒性评估,同时高锰酸钾(PM)氧化作为对照组.研究表明,PM/BS预氧化较PM预氧化能加大污染物质MET的降解效率,两种预氧化过程中MET的降解率在酸性条件下最大且随着pH的升高而降低,DBPs的生成量和毒性都随着pH的升高而增大.碱性条件下降解率低却生成了大量的二氯乙腈,导致DBPs的生成量和毒性大幅增加,值得引起重视和注意,本文对此种现象产生的原因进行了详细探讨.PM/BS系统降解污染物需要控制在酸性条件下进行,既能增大降解效率,又能降低DBPs的毒性.
  • 加载中
  • [1] BOUCHONNET S, BOURCIER S, SOUISSI Y, et al. GC-MSn and LC-MS/MS couplings for the identification of degradation products resulting from the ozonation treatment of Acetochlor[J]. Journal of Mass Spectrometry, 2012, 47(4):439-452.
    [2] HENRIKSEN T, SVENSMARK B, JUHLER R K. Analysis of metribuzin and transformation products in soil by pressurized liquid extraction and liquid chromatographic-tandem mass spectrometry[J]. Journal of Chromatography A, 2002, 957(1):79-87.
    [3] MALOSCHIK E, ERNST A, HEGEDUS G, et al. Monitoring water-polluting pesticides in Hungary[J]. Microchemical Journal, 2007, 85(1):88-97.
    [4] PETRI B G, THOMSON N R, URNOWICZ M A. Fundamentals of ISCO using permanganate[M]//In Situ Chemical Oxidation for Groundwater Remediation[M]. New York:Springer, 2011:89-146.
    [5] GUAN X, HE D, MA J, et al. Application of permanganate in the oxidation of micro-pollutants:A mini review[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(4):405-413.
    [6] 孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学,2017. SUN B. Kinetics and mechanisms on the fast degradation of Micro-Organic contaminants by bisulfite activated permanganate[D]. Harbin:Harbin Institute of Technology, 2017(in Chinese).
    [7] SUN B, GUAN X H, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants:The involvement of Mn(Ⅲ)[J]. Environmental Science Technology 2015, 49:12414-12421.
    [8] GAO Y, JIANG J, ZHOU Y, et al. Does soluble Mn (Ⅲ) oxidant formed in situ account for enhanced transformation of triclosan by Mn (Ⅶ) in the presence of ligands[J]. Environmental Science & Technology, 2018, 52(8):4785-4793.
    [9] GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn (Ⅲ) stabilizing agent in activating permanganate (Mn (Ⅶ)) for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 327:418-422.
    [10] TARTAR H V, GARRETSON H H. The thermodynamic ionization constants of sulfurous acid at 25℃[J]. Journal of the American Chemical Society, 1941, 63(3):808-816.
    [11] LIU C, ZHAO M, HE S, et al. Activation of permanganate with hydrogen sulfite for enhanced oxidation of a typical amino acid[J]. Environmental Technology, doi:10.1080/09593330.2018.1426644.
    [12] WANG A Q, LIN Y L, XU B, et al. Degradation of acrylamide during chlorination as a precursor of haloacetonitriles and haloacetamides[J]. Science of the Total Environment, 2018, 615:38-46.
    [13] FANG J, MA J, YANG X, et al. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa[J]. Water Research, 2010, 44(6):1934-1940.
    [14] DING S, CHU W, BOND T, et al. Formation and estimated toxicity of trihalomethanes, haloacetonitriles, and haloacetamides from the chlor (am) ination of acetaminophen[J]. Journal of Hazardous Materials, 2018, 341:112-119.
    [15] YU Y, RECKHOW D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science & Technology, 2015, 49(18):11028-11036.
    [16] ANTONOPOULOU M., KONSTANTINOU I. Photocatalytic treatment of metribuzin herbicide over TiO2aqueoussuspensions:Removal efficiency, identification of transformation products, reaction pathways and ecotoxicity evaluation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2014, 294:110-120.
    [17] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23):7175-7185.
    [18] PLEWA M J. Charting a new path to resolve the adverse health effects of DBPs//Abstracts of papers of the american chemical society[C]. 115516TH ST, NW, WASHINGTON, DC 20036 USA:AMER CHEMICAL SOC, 2014, 248.
    [19] PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs[J]. Urbana, 2008, 51:36-50.
    [20] HU J, CHU W, SUI M, et al. Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination[J]. Chemical Engineering Journal, 2018, 335:352-361.
  • 加载中
计量
  • 文章访问数:  1575
  • HTML全文浏览数:  1560
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-10-16
  • 刊出日期:  2019-05-15
杨海燕, 柳婷, 董慧峪, 强志民, 叶桂洪, 李翼, 孙晓博. 高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究[J]. 环境化学, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
引用本文: 杨海燕, 柳婷, 董慧峪, 强志民, 叶桂洪, 李翼, 孙晓博. 高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究[J]. 环境化学, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
YANG Haiyan, LIU Ting, DONG Huiyu, QIANG Zhimin, YE Guihong, LI Yi, SUN Xiaobo. Effects of PM and PM/BS on the degradation of metribuzin and the formation potential of disinfection by-products[J]. Environmental Chemistry, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602
Citation: YANG Haiyan, LIU Ting, DONG Huiyu, QIANG Zhimin, YE Guihong, LI Yi, SUN Xiaobo. Effects of PM and PM/BS on the degradation of metribuzin and the formation potential of disinfection by-products[J]. Environmental Chemistry, 2019, 38(5): 999-1004. doi: 10.7524/j.issn.0254-6108.2018101602

高锰酸钾/亚硫酸氢钠氧化嗪草酮后消毒副产物的生成趋势及毒性研究

  • 1.  北京建筑大学, 北京应对气候变化研究和人才培养基地, 北京, 100044;
  • 2.  中国科学院生态环境研究中心, 饮用水科学与技术重点实验室, 北京, 100085
基金项目:

国家自然科学基金(51525806)和水体污染控制与治理科技重大专项(2017ZX07207-004)资助.

摘要: 本文研究了不同pH条件下高锰酸钾/亚硫酸氢钠(PM/BS)对农药嗪草酮(MET)的氧化降解,预氧化后续氯化过程中消毒副产物(DBPs)的变化和毒性评估,同时高锰酸钾(PM)氧化作为对照组.研究表明,PM/BS预氧化较PM预氧化能加大污染物质MET的降解效率,两种预氧化过程中MET的降解率在酸性条件下最大且随着pH的升高而降低,DBPs的生成量和毒性都随着pH的升高而增大.碱性条件下降解率低却生成了大量的二氯乙腈,导致DBPs的生成量和毒性大幅增加,值得引起重视和注意,本文对此种现象产生的原因进行了详细探讨.PM/BS系统降解污染物需要控制在酸性条件下进行,既能增大降解效率,又能降低DBPs的毒性.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回