[1] 宁增平,肖青相,蓝小龙,等. 都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学,2017,38(7):2784-2792. NING Z P, XIAO Q X, LAN X L, et al. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 2017, 38(7):2784-2792(in Chinese).
[2] 陈京晶,张国平,李海霞,等. 电化学氢化物发生法处理含锑废水及对锑的回收[J]. 环境科学,2015,36(4):1338-1344. CHEN J J, ZHANG G P, LI H X, et al. Removal of antimony in wastewater by electrochemical hydride generationand the recovery of antimony[J]. Environmental Science, 2015, 36(4):1338-1344(in Chinese).
[3] WU J. Antimony vein deposits of China[J]. Ore Geology Reviews, 1993, 8(3-4):213-232.
[4] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters:Ⅰ.Occurrence[J]. Earth Science Reviews, 2002, 57(1-2):125-176.
[5] 陈秋平,胥思勤,安艳玲,等. 锑矿土壤中As和Sb的分布、形态及生物可利用性[J]. 环境化学,2014,33(8):1301-1306. CHEN Q P, XU S Q, AN Y L, et al. Distribution, speciation and bio-availability of arsenic(As) and antimony(Sb) in soils of antimony mine[J]. Environmental Chemistry, 2014, 33(8):1301-1306(in Chinese).
[6] HE M, WANG X, WU F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, s 421-422(3):41-50.
[7] 项萌,张国平,李玲,等. 广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J]. 环境科学,2012,33(1):266-272. XIANG M, ZHANG G P, LI L, et al. Characteristics of heavy metals in soil profile and pore water around Hechi antimony-lead smelter,Guangxi,China[J]. Environmental Science, 2012, 33(1):266-272(in Chinese).
[8] 宁增平,肖唐付. 锑的表生地球化学行为与环境危害效应[J]. 地球与环境,2007,35(2):176-180. NING Z P, XIAO T F. Hypergene geochemical behavior and environmental hazards effect of antimony[J]. Earth and Environment, 2007, 35(2):176-180(in Chinese).
[9] SUSAN C W, PETER V L, PAUL M A,et al. The chemistry and behavior of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158:1169-1181.
[10] 赵霞,罗培松,相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测,2016,32(4):91-97. ZHAO X, LUO P S, XIANG Q M. Vestigation on the emission situation and the source of heavy metals antimony in typical dyeing wastewater of Shaoxing[J]. Environmental Monitoring in China, 2016, 32(4):91-97(in Chinese).
[11] DAI W, SUN S, CHEN T. Experimental study on using precipitation flotation process to treat electroplation wastewater[J]. Nonferrous Metals, 2009, A33(5):1-4.
[12] KAMEDA T, YAGIHASHI N, KYESUNG P, et al. Preparation of Fe-Al layered double hydroxide and its application in Sb removal[J]. Fresenius Environmental Bulletin, 2009, 18(6):1006-1010.
[13] VERBINNEN B, BLOCK C, LIEVENS P, et al. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite[J]. Waste & Biomass Valorization, 2013, 4(3):635-645.
[14] JIA M, HU J W, LUO Jet al. Comparison study on adsorption and removal of antimony from acidic aqueous solution by activated carbons and machine-made charcoal[J]. Advanced Materials Research, 2013, 779-780:1600-1606.
[15] SAN A, ŞAHINOGĞLU G, TÜZEN M. Antimony(Ⅲ) adsorption from aqueous solution using raw perlite and Mn-modified perlite:Equilibrium, thermodynamic, and kinetic studies[J]. Industrial & Engineering Chemistry Research, 2012, 51(19):6877-6886.
[16] ZHANG G, OUYANG X, LI H, et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115:148-155.
[17] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2014. National Bureau of Statistics of the People's Repubic of China. China Statistical Yearbook[M]. Beijing:China Statistics Press, 2014(in Chinese).
[18] 李虹,付乐. 印染工业园区废水深度处理技术研究进展[J]. 环境工程,2014,32(11):18-21. LI H, FU L. Research progress of wastewater advanced treatment technology for printing and dyeing industrial parks[J]. Environmental Engineering, 2014, 32(11):18-21(in Chinese).
[19] 常吟琳,周律,辛怡颖,等. 基于水网络优化的棉针织印染废水回用技术研究[J]. 中国给水排水,2013,29(23):106-110. CHANG Y L, ZHOU L, XIN Y Y, et al. Reuse processes of cotton knitted fabric printing and dyeing wastewater based on water network optimization[J]. China Water & Wastewater, 2013, 29(23):106-110(in Chinese).
[20] 国家环境保护总局. 水和废水监测分析方法编委会. 水与废水监测分析方法[M]. 第四版. 北京:中国环境科学出版社,2002. Ministry of Environmental Protection of the People's Republic of China.Editorial Committee of Method for Monitoring and Analyzing Water and Wastewater. Method for monitoring and analyzing water and wastewater[M]. Fourth Edition. Beijing:China Environmental Science Press, 2002(in Chinese).
[21] 国家环境保护总局. 水质全盐量的测定重量法(HJ/T 51-1999)[S]. 北京:中国环境科学出版社,1999. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of total salt-Gravimetric method(HJ/T 51-1999)[S]. Beijing:China Environmental Science Press, 1999 (in Chinese).
[22] 龙腾锐,蒋洪波,丁文川. 不同工况的低强度超声波处理对活性污泥活性的影响[J]. 环境科学,2007,28(2):392-395. LONG T R, JIANG H B, DING W C. Various Effects on the activity of activated sludge by low intensity ultrasonic treatments with different parameter combinations[J]. Environmental Science, 2007, 28(2):392-395(in Chinese).
[23] 郝晓地,张自杰. 活性污泥耗氧速率的测定及其影响因素试验分析[J]. 环境科学与技术,1991(3):35-39. HAO H D, ZHANG Z J. Determination of oxygen consumption rate of activated sludge and experimental analysis of its influencing factors[J]. Environmental Science & Technology, 1991 (3):35-39(in Chinese).
[24] 中国环境保护部. 水质汞、砷、硒、铋和锑的测定原子荧光法(HJ694-2014)[S]. 北京:中国环境科学出版社,2014. Ministry of Environmental Protection of the People's Republic of China. Water Quality-Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony-Atomic Fluorescence Spectrometry(HJ694-2014)[S].Beijing:China Environmental Science Press,2014 (in Chinese).
[25] KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17):4171-4179.
[26] 郑满水. 共沉淀-超滤去除原水中锑的研究[D]. 昆明:昆明理工大学,2014. ZHENG M S. The research on antimony removal in raw water with coprecipitation-ultrafitration[D].Kunming:Kunming University of Science & Technology, 2014(in Chinese).
[27] 谢冰,奚旦立,陈季华. 活性污泥工艺对重金属的去除及微生物的抵制机制[J]. 上海环境科学,2003,22(4):283-288. XIE B, XI D L, CHENG J H. Mechanisms of removal heavy metals and resistance to microorganisms by activated sludge process[J]. Shanghai Environmental Sciences, 2003, 22(4):283-288(in Chinese).
[28] 吴珊. 蓝藻对锑的生物吸附与解吸行为研究[D]. 北京:中国环境科学研究院,2012. WU S. Behaviors of biosorption and desorption of antimony by naturally occurring cyanobacteria Microcystis[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2012(in Chinese).
[29] ZHANG D Y, PAN X L, ZHAO L, et al. Biosorption of antimony (Sb) by the cyanobacterium Synechocystis sp[J]. Polish Journal of Environmental Studies, 2011, 20(5):1353-1358.
[30] 李小娇. 微生物处理锑矿废水技术研究[D]. 长沙:湖南农业大学,2011. LI X J. Studies on microorganism treating antimony ore wastewater[D]. Changsha:Hunan Agricultural University,2011(in Chinese).
[31] CHEN K Y, YOUNG C S, JAN T K, et al. Trace metals in wastewater effluents[J]. Water Pollution Control Federation, 1974, 46(2):2663-2675.
[32] 杨朝晖,陶然,曾光明,等. 多粘类芽孢杆菌GA1产絮凝剂的培养基和分段培养工艺[J]. 环境科学,2006,27(7):1444-1448. YANG Z H, TAO R, ZENG G M, et al. Culture medium and grading culture technics for bioflocculant production by Paenibacillus polymyxa GA1[J]. Environmental Science, 2006, 27(7):1444-1448(in Chinese).
[33] 李小娇,成应向,龚道新,等. Bacillus sp.处理含锑废水试验研究[J]. 环境科学与技术,2012,35(2):162-166. LI X J, CHENG Y X, GONG D X, et al. Bacillus sp. treating wastewater containing antimony[J]. Environmental Science & Technology, 2012, 35(2):162-166(in Chinese).
[34] 李朝阳,李辰. 污水处理厂活性污泥中毒的原因探讨与控制[J]. 中国给水排水,2013,29(18):146-148. LI Z Y, LI C. Reason and control of activated sludge poisoning in a sewage treatment plant[J]. China Water & Wastewater, 2013, 29(18):146-148(in Chinese).
[35] 李志华,刘芳,郭强,等. 选择性抑制技术测定活性污泥细菌、真菌活性分布的适用性分析[J]. 环境科学,2010,31(7):1561-1565. LI Z H, LIU F, GUO Q, et al. Feasibility of antibiotic selective inhibition method applied for measuring bacterial and fungal activities distribution in activated sludge[J]. Environmental Science, 2010, 31(7):1561-1565(in Chinese).
[36] 李志华,柴波,孙垂猛,等. 冲击与恢复条件下活性污泥OUR的变化规律[J]. 中国给水排水,2015,31(9):19-22 ,28. LI Z H, CHAI B, SUN C M, et al. Variation of our of activated sludge under shock and recovery conditions[J]. China Water & Wastewater, 2015, 31(9):19-22,28(in Chinese).
[37] HAO R X, ZHOU Y W, CHENG S Y, et al. The accumulation of nonylphenol in a wastewater recycling process[J]. Chemosphere, 2008, 70(5):783-790.