锑在印染废水高比例循环利用过程中的富集
Accumulation of antimony in a high rate printing and dyeing wastewater recycling process
-
摘要: 针对印染废水高比例循环利用过程中物质的积累问题,通过5 m3·d-1的中试试验系统,分析探讨了具有潜在毒性的难去除污染物锑在循环过程中的富集规律.研究结果表明,主要处理单元出水的锑浓度随着循环次数的增加呈现先增加后稳定的趋势,且在循环过程中总去除率约为40%.基于物料平衡原理,建立了关于二沉出水锑浓度的富集模型.通过对比发现,利用该模型所得到的模拟曲线与实测值具有良好的一致性,表明了该模型对于预测循环系统中的锑富集具有重要的意义.Abstract: With an objective of understanding pollutant accumulation in high-rate printing and dyeing wastewater recycling processes, a pilot scale experiment with the treatment of 5 m3·d-1 was conducted to evaluate the accumulation of antimony, which has potential toxicity in the wastewater. In the experiment, with increasing number of recycling, the concentration of antimony was increased first and then remained constant, with a total removal efficiency of around 40%. In addition, a mathematical model was proposed to simulate antimony accumulation in the WWTP effluent according to the mass balance. Through the comparative analysis, the simulated curve derived from the accumulation model agreed reasonably well with the experimental data, which indicated that the proposed model had great significance in predicting the antimony accumulation in the high rate printing and dyeing wastewater recycling process.
-
Key words:
- antimony /
- printing and dyeing wastewater /
- recycling /
- accumulation
-
-
[1] 宁增平,肖青相,蓝小龙,等. 都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学,2017,38(7):2784-2792. NING Z P, XIAO Q X, LAN X L, et al. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 2017, 38(7):2784-2792(in Chinese).
[2] 陈京晶,张国平,李海霞,等. 电化学氢化物发生法处理含锑废水及对锑的回收[J]. 环境科学,2015,36(4):1338-1344. CHEN J J, ZHANG G P, LI H X, et al. Removal of antimony in wastewater by electrochemical hydride generationand the recovery of antimony[J]. Environmental Science, 2015, 36(4):1338-1344(in Chinese).
[3] WU J. Antimony vein deposits of China[J]. Ore Geology Reviews, 1993, 8(3-4):213-232. [4] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters:Ⅰ.Occurrence[J]. Earth Science Reviews, 2002, 57(1-2):125-176. [5] 陈秋平,胥思勤,安艳玲,等. 锑矿土壤中As和Sb的分布、形态及生物可利用性[J]. 环境化学,2014,33(8):1301-1306. CHEN Q P, XU S Q, AN Y L, et al. Distribution, speciation and bio-availability of arsenic(As) and antimony(Sb) in soils of antimony mine[J]. Environmental Chemistry, 2014, 33(8):1301-1306(in Chinese).
[6] HE M, WANG X, WU F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, s 421-422(3):41-50. [7] 项萌,张国平,李玲,等. 广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J]. 环境科学,2012,33(1):266-272. XIANG M, ZHANG G P, LI L, et al. Characteristics of heavy metals in soil profile and pore water around Hechi antimony-lead smelter,Guangxi,China[J]. Environmental Science, 2012, 33(1):266-272(in Chinese).
[8] 宁增平,肖唐付. 锑的表生地球化学行为与环境危害效应[J]. 地球与环境,2007,35(2):176-180. NING Z P, XIAO T F. Hypergene geochemical behavior and environmental hazards effect of antimony[J]. Earth and Environment, 2007, 35(2):176-180(in Chinese).
[9] SUSAN C W, PETER V L, PAUL M A,et al. The chemistry and behavior of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158:1169-1181. [10] 赵霞,罗培松,相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测,2016,32(4):91-97. ZHAO X, LUO P S, XIANG Q M. Vestigation on the emission situation and the source of heavy metals antimony in typical dyeing wastewater of Shaoxing[J]. Environmental Monitoring in China, 2016, 32(4):91-97(in Chinese).
[11] DAI W, SUN S, CHEN T. Experimental study on using precipitation flotation process to treat electroplation wastewater[J]. Nonferrous Metals, 2009, A33(5):1-4. [12] KAMEDA T, YAGIHASHI N, KYESUNG P, et al. Preparation of Fe-Al layered double hydroxide and its application in Sb removal[J]. Fresenius Environmental Bulletin, 2009, 18(6):1006-1010. [13] VERBINNEN B, BLOCK C, LIEVENS P, et al. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite[J]. Waste & Biomass Valorization, 2013, 4(3):635-645. [14] JIA M, HU J W, LUO Jet al. Comparison study on adsorption and removal of antimony from acidic aqueous solution by activated carbons and machine-made charcoal[J]. Advanced Materials Research, 2013, 779-780:1600-1606. [15] SAN A, ŞAHINOGĞLU G, TÜZEN M. Antimony(Ⅲ) adsorption from aqueous solution using raw perlite and Mn-modified perlite:Equilibrium, thermodynamic, and kinetic studies[J]. Industrial & Engineering Chemistry Research, 2012, 51(19):6877-6886. [16] ZHANG G, OUYANG X, LI H, et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115:148-155. [17] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2014. National Bureau of Statistics of the People's Repubic of China. China Statistical Yearbook[M]. Beijing:China Statistics Press, 2014(in Chinese). [18] 李虹,付乐. 印染工业园区废水深度处理技术研究进展[J]. 环境工程,2014,32(11):18-21. LI H, FU L. Research progress of wastewater advanced treatment technology for printing and dyeing industrial parks[J]. Environmental Engineering, 2014, 32(11):18-21(in Chinese).
[19] 常吟琳,周律,辛怡颖,等. 基于水网络优化的棉针织印染废水回用技术研究[J]. 中国给水排水,2013,29(23):106-110. CHANG Y L, ZHOU L, XIN Y Y, et al. Reuse processes of cotton knitted fabric printing and dyeing wastewater based on water network optimization[J]. China Water & Wastewater, 2013, 29(23):106-110(in Chinese).
[20] 国家环境保护总局. 水和废水监测分析方法编委会. 水与废水监测分析方法[M]. 第四版. 北京:中国环境科学出版社,2002. Ministry of Environmental Protection of the People's Republic of China.Editorial Committee of Method for Monitoring and Analyzing Water and Wastewater. Method for monitoring and analyzing water and wastewater[M]. Fourth Edition. Beijing:China Environmental Science Press, 2002(in Chinese). [21] 国家环境保护总局. 水质全盐量的测定重量法(HJ/T 51-1999)[S]. 北京:中国环境科学出版社,1999. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of total salt-Gravimetric method(HJ/T 51-1999)[S]. Beijing:China Environmental Science Press, 1999 (in Chinese).
[22] 龙腾锐,蒋洪波,丁文川. 不同工况的低强度超声波处理对活性污泥活性的影响[J]. 环境科学,2007,28(2):392-395. LONG T R, JIANG H B, DING W C. Various Effects on the activity of activated sludge by low intensity ultrasonic treatments with different parameter combinations[J]. Environmental Science, 2007, 28(2):392-395(in Chinese).
[23] 郝晓地,张自杰. 活性污泥耗氧速率的测定及其影响因素试验分析[J]. 环境科学与技术,1991(3):35-39. HAO H D, ZHANG Z J. Determination of oxygen consumption rate of activated sludge and experimental analysis of its influencing factors[J]. Environmental Science & Technology, 1991 (3):35-39(in Chinese).
[24] 中国环境保护部. 水质汞、砷、硒、铋和锑的测定原子荧光法(HJ694-2014)[S]. 北京:中国环境科学出版社,2014. Ministry of Environmental Protection of the People's Republic of China. Water Quality-Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony-Atomic Fluorescence Spectrometry(HJ694-2014)[S].Beijing:China Environmental Science Press,2014 (in Chinese).
[25] KANG M, KAMEI T, MAGARA Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Water Research, 2003, 37(17):4171-4179. [26] 郑满水. 共沉淀-超滤去除原水中锑的研究[D]. 昆明:昆明理工大学,2014. ZHENG M S. The research on antimony removal in raw water with coprecipitation-ultrafitration[D].Kunming:Kunming University of Science & Technology, 2014(in Chinese). [27] 谢冰,奚旦立,陈季华. 活性污泥工艺对重金属的去除及微生物的抵制机制[J]. 上海环境科学,2003,22(4):283-288. XIE B, XI D L, CHENG J H. Mechanisms of removal heavy metals and resistance to microorganisms by activated sludge process[J]. Shanghai Environmental Sciences, 2003, 22(4):283-288(in Chinese).
[28] 吴珊. 蓝藻对锑的生物吸附与解吸行为研究[D]. 北京:中国环境科学研究院,2012. WU S. Behaviors of biosorption and desorption of antimony by naturally occurring cyanobacteria Microcystis[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2012(in Chinese). [29] ZHANG D Y, PAN X L, ZHAO L, et al. Biosorption of antimony (Sb) by the cyanobacterium Synechocystis sp[J]. Polish Journal of Environmental Studies, 2011, 20(5):1353-1358. [30] 李小娇. 微生物处理锑矿废水技术研究[D]. 长沙:湖南农业大学,2011. LI X J. Studies on microorganism treating antimony ore wastewater[D]. Changsha:Hunan Agricultural University,2011(in Chinese). [31] CHEN K Y, YOUNG C S, JAN T K, et al. Trace metals in wastewater effluents[J]. Water Pollution Control Federation, 1974, 46(2):2663-2675. [32] 杨朝晖,陶然,曾光明,等. 多粘类芽孢杆菌GA1产絮凝剂的培养基和分段培养工艺[J]. 环境科学,2006,27(7):1444-1448. YANG Z H, TAO R, ZENG G M, et al. Culture medium and grading culture technics for bioflocculant production by Paenibacillus polymyxa GA1[J]. Environmental Science, 2006, 27(7):1444-1448(in Chinese).
[33] 李小娇,成应向,龚道新,等. Bacillus sp.处理含锑废水试验研究[J]. 环境科学与技术,2012,35(2):162-166. LI X J, CHENG Y X, GONG D X, et al. Bacillus sp. treating wastewater containing antimony[J]. Environmental Science & Technology, 2012, 35(2):162-166(in Chinese).
[34] 李朝阳,李辰. 污水处理厂活性污泥中毒的原因探讨与控制[J]. 中国给水排水,2013,29(18):146-148. LI Z Y, LI C. Reason and control of activated sludge poisoning in a sewage treatment plant[J]. China Water & Wastewater, 2013, 29(18):146-148(in Chinese).
[35] 李志华,刘芳,郭强,等. 选择性抑制技术测定活性污泥细菌、真菌活性分布的适用性分析[J]. 环境科学,2010,31(7):1561-1565. LI Z H, LIU F, GUO Q, et al. Feasibility of antibiotic selective inhibition method applied for measuring bacterial and fungal activities distribution in activated sludge[J]. Environmental Science, 2010, 31(7):1561-1565(in Chinese).
[36] 李志华,柴波,孙垂猛,等. 冲击与恢复条件下活性污泥OUR的变化规律[J]. 中国给水排水,2015,31(9):19-22 ,28. LI Z H, CHAI B, SUN C M, et al. Variation of our of activated sludge under shock and recovery conditions[J]. China Water & Wastewater, 2015, 31(9):19-22,28(in Chinese).
[37] HAO R X, ZHOU Y W, CHENG S Y, et al. The accumulation of nonylphenol in a wastewater recycling process[J]. Chemosphere, 2008, 70(5):783-790. -

计量
- 文章访问数: 1034
- HTML全文浏览数: 988
- PDF下载数: 249
- 施引文献: 0