[1] Calvert J G, Atkinson R, Kerr J A, et al. The mechanisms of atmospheric oxidation of alkenes [M]. Oxford:Oxford University Press, 2000: 172-335
[2] [2] Johnson D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere[J]. Chemical Society Reviews, 2008, 37: 699-716
[3] [3] Cox R A, Penkett S A. Aerosol formation from sulphur dioxide in the presence of ozone, olefinic hydrocarbons [J]. Journal of Chemical Society, 1972, 68:1735-1753 DOI: 10.1039/F19726801735
[4] [5] Cremer D. Theoretical determination of molecular structure and conformation. 6. The criegee intermediate evidence for a stabilization of its syn form by alkyl substituents [J]. Journal of American Chemical Society, 1979, 101(24):7199-7205
[5] [6] Cremer D, Gauss J, Kraka E, et al. A CCSD(T) investigation of carbonyl oxide and dioxirane. 3. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies [J]. Chemical Physics Letters, 1993, 209(5/6):547-556
[6] [8] Horie O, Moortgat G K. Gas-phase ozonolysis of alkenes. Recent advances in mechanistic investigations [J]. Accounts of Chemical Research, 1998, 31(7):387-396
[7] [9] Kroll J H, Sahay S R, Anderson J G, et al. Mechanism of HO<em>x formation in the gas-phase ozone-alkene reaction. 2. Prompt versus thermal dissociation of carbonyl oxides to form OH [J]. Journal of Physical Chemistry A, 2001, 105(18):4446-4457
[8] [10] Kroll J H, Donahue N M, Cee V J, et al. Gas-phase ozonolysis of alkenes: Formation of OH from anti carbonyl oxides [J]. Journal of American Chemical Society, 2002, 124(29):8518-8519
[9] [11] Hatakeyama S, Akimoto H. Reactions of criegee intermediates in the gas phase [J]. Research on Chemical Intermediates, 1994, 20(3/5):503-524
[10] [12] Fenske J D, Hasson A S, Ho A W, et al. Measurement of absolute unimolecular and bimolecular rate constants for CH3CHOO generated by the trans-2-butene reaction with ozone in the gas phase [J]. Journal of Physical Chemistry A, 2000, 104(44):9921-9932
[11] [13] Tobias H J, Ziemann P J. Kinetics of the gas-phase reactions of alcohols, aldehydes, carboxylic acids, and water with the C13 stabilized criegee intermediate formed from ozonolysis of 1-tetradecene [J]. Journal of Physical Chemistry A, 2001, 105(25):6129-6135
[12] [14] Horie O, Neeb P, Limbach S, et al. Geophysical formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour [J]. Geophysical Research Letters, 1994, 21(44):1523-1526
[13] [15] Tobias H J, Docherty K S, Beving D E, et al. Effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and O3 [J]. Environmental Science & Technology, 2000, 34(11):2116-2125
[14] [16] Baker J, Aschmann S M, Arey J, et al. Reactions of stabilized criegee intermediates from the gas-phase reactions of O3 with selected alkenes [J]. International Journal of Chemical Kinetics, 2002, 34(2):73-85
[15] [17] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions [J]. Chemical Physics Physical Chemistry, 2002, 3(2):215-221
[16] [18] Tillmann R, Hallquist M, Jonsson A M, et al. Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene[J]. Atmospheric Chemistry and Physics, 2010, 10: 7057-7072 DOI:10.5194/acp-10-7057-2010
[17] [19] Neeb P, Horie O, Moortgat G K. Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds [J]. International Journal of Chemical Kinetics, 1996, 28(10):721-730
[18] [20] Tobias H J, Ziemann P J. Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids [J]. Environmental Science & Technology, 2000, 34(11):2105-2115
[19] [21] Ziemann P J. Formation of alkoxyhydroperoxy aldehydes and cyclic peroxyhemiacetals from reactions of cyclic alkenes with O3 in the presence of alcohols [J]. Journal of Physical Chemistry A, 2003, 107(12):2048-2060
[20] [22] Winterhalter R, Neeb P, Grossmann D, et al. Products and mechanism of the gas phase reaction of ozone with β-pinene [J]. Journal of Atmospheric Chemistry, 2000, 35(2):165-197
[21] [23] Docherty K S, Ziemann P J. Effects of stabilized criegee intermediate and OH radical scavengers on aerosol formation from reactions of β-pinene with O3 [J]. Atmospheric Science & Technology, 2003, 37(11):877-891
[22] [24] Taatjes C A, Meloni G, Selby T M, et al. Direct observation of the gas-phase criegee intermediate (CH2OO) [J]. Journal of American Chemical Society, 2008, 130 (36): 11883-11885
[23] [25] Welz O, Savee J D, Osborn D L, et al. Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2 [J]. Science, 2012, 335(6065): 204-207
[24] [26] Finlayson B J, Pitts J N, Akimoto H. Production of vibrationally excited OH in chemiluminescent ozone-olefin reactions [J]. Chemical Physics Letters, 1972, 12(3):495-498
[25] [27] Herron J T, Huie R E. Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase propene and isobutene [J]. Internatinal Journal of Chemical Kinetics, 1978, 10(10): 1019-1041
[26] [28] Martinez R I, Herron J T, Huie R E. The mechanism of ozone-alkene reactions in the gas phase. A mass spectrometric study of the reactions of eight linear and branched-chain alkenes [J]. Journal of American Chemical Society, 1981, 103(13): 3807-3820
[27] [29] Niki H, Maker P D, Savage C M, et al. FTIR spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetramethylethylene [J]. Journal of Physical Chemistry, 1987, 91(4):941-946
[28] [30] Rickard A R, Johnson D, McGill C D, et al. OH yields in the gas-phase reactions of ozone with alkenes [J]. Journal of Physical Chemistry A, 1999, 103(38):7656-7664
[29] [31] Kroll J H, Clarke J S, Donahue N M, et al. Mechanism of HO<em>x formation in the gas-phase ozone-alkene reaction. 1. Direct, pressure-dependent measurements of prompt OH yields [J]. Journal of Physical Chemistry A, 2001, 105(9):1554-1560
[30] [32] Presto A A, Donahue N M. Ozonolysis fragment quenching by nitrate formation:The pressure dependence of prompt OH radical formation [J]. Journal of Physical Chemistry A, 2004, 108(42):9096-9104
[31] [33] Drozd G T, Kroll J H, Donahue N M. 2,3-dimethyl-2-butene (TME) ozonolysis: Pressure dependence of stabilized criegee intermediates and evidence of stabilized vinyl hydroperoxides [J]. Journal of Physical Chemistry A, 2011, 115(2):161-166
[32] [34] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From air pollution to climate change [M]. USA:Wiley-Interscience, 1998, 647-649
[33] [35] Kanakidou M, Seinfeld J H, Pandis S N, et al. Organic aerosol and global climate modelling: A review [J]. Atmospheric Chemical Physics 2005, 5(4):1053-1123
[34] [36] Winterhalter R, Dingenen R Van, Larsen B R, et al. LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH radicals [J]. Atmospheric Chemical Physics Discussion, 2003, 3:1-39
[35] [37] Koch S, Winterhalter R, Uherek E. Formation of new particles in the gas-phase ozonolysis of monoterpenes [J]. Atmosphere Environment, 2000, 34(23):4031-4042
[36] [38] Jenkin M E, Shallcross D E, Harvey J N. Development and application of a possible mechanism for the generation of cis-pinic acid from the ozonolysis of α- and β-pinene [J]. Atmosphere Environment, 2000, 34(18): 2837-2850
[37] [39] Christoffersen T S, Hjorth J, Horie O, et al. Cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of a-pinene [J]. Atmosphere Environment, 1998, 32(10):1657-1661
[38] [40] Jaoui M, Kamens R M. Mass balance of gaseous and particulate products from β-pinene/O3/air in the absence of light and β-pinene/NO<em>x/air in the presence of natural sunlight [J]. Journal of Atmospheric Chemistry, 2003, 45(2):101-141
[39] [41] Ma Y, Russell A T, Marston G. Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene [J]. Physical Chemistry Chemical Physics, 2008, 10(29):4294-4312
[40] [42] Kückelmann U, Warscheid S, Hoffmann T. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry [J]. Analytic Chemistry, 2000, 72(8):1905-1912
[41] [43] Claeys M, Iinuma Y, Szmigielski R, et al. Terpenylic acid and related compounds from the oxidation of aPinene: Implications for new particle formation and growth above forests[J]. Environmental Science & Technology, 2009, 41(18): 6976-6982
[42] [44] Gao Y Q, Wiley A H,IV,Murray V J, et al. Molecular composition of monoterpene secondary organic aerosol at low mass loading[J]. Environmental Science & Technology, 2010, 44(20): 7897-7902
[43] [45] Edney E O, Kleindienst T E, Conver T S, et al. Polar organic oxygenates in PM2.5 at a southeastern site in the United States [J]. Atmosphere Environment, 2003, 37(28): 3947-3965
[44] [46] Kubátová A, Vermeylen R, Claeys M, et al. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds [J]. Atmosphere Environment, 2000, 34(29/30):5037-5051
[45] [47] Claeys M, Szmigielski R, Kourtchev I, et al. Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene [J]. Environmental Science & Technology, 2007, 41(5):1628-1634
[46] [48] Iinuma Y, oge O B, Gnauk T, et al. Aerosol chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products [J]. Atmospheric Environment, 2004, 38(5): 761-773
[47] [49] Tolocka M P, Jang M, Ginter J M, et al. Formation of oligomers in secondary organic aerosol [J]. Environmental Science & Technology, 2004, 38(5):1428-1434
[48] [50] Gao S, Keywood M, Ng N L, et al. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene [J]. Journal of Atmospheric Chemistry, 2004, 108(46):10147-10164