烯烃气相臭氧化反应机理的研究进展

袁成, 马嫣, 陈敏东. 烯烃气相臭氧化反应机理的研究进展[J]. 环境化学, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
引用本文: 袁成, 马嫣, 陈敏东. 烯烃气相臭氧化反应机理的研究进展[J]. 环境化学, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
YUAN Cheng, MA Yan, CHEN Mindong. Advances in the studies of the mechanisms of gas-phase alkene ozonolysis[J]. Environmental Chemistry, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
Citation: YUAN Cheng, MA Yan, CHEN Mindong. Advances in the studies of the mechanisms of gas-phase alkene ozonolysis[J]. Environmental Chemistry, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001

烯烃气相臭氧化反应机理的研究进展

  • 基金项目:

    国家自然科学基金项目(40905057)

    江苏省属高校自然科学研究项目(09KJB170004)资助.

Advances in the studies of the mechanisms of gas-phase alkene ozonolysis

  • Fund Project:
  • 摘要: 气相条件下的烯烃臭氧化反应是大气中极其重要的反应之一,是多种自由基以及二次有机气溶胶的重要来源,与大气环境和人类生活密切相关.综合以往的研究成果,对早期提出的Criegee机理做了简介,着重阐述了Criegee中间体(CI)的结构及其相关反应、羟自由基的形成机理及萜烯臭氧化形成二次有机气溶胶产物的机理.最后,对未来的研究方向进行了探讨.
  • 加载中
  • [1] Calvert J G, Atkinson R, Kerr J A, et al. The mechanisms of atmospheric oxidation of alkenes [M]. Oxford:Oxford University Press, 2000: 172-335
    [2] [2] Johnson D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere[J]. Chemical Society Reviews, 2008, 37: 699-716
    [3] [3] Cox R A, Penkett S A. Aerosol formation from sulphur dioxide in the presence of ozone, olefinic hydrocarbons [J]. Journal of Chemical Society, 1972, 68:1735-1753 DOI: 10.1039/F19726801735
    [4] [5] Cremer D. Theoretical determination of molecular structure and conformation. 6. The criegee intermediate evidence for a stabilization of its syn form by alkyl substituents [J]. Journal of American Chemical Society, 1979, 101(24):7199-7205
    [5] [6] Cremer D, Gauss J, Kraka E, et al. A CCSD(T) investigation of carbonyl oxide and dioxirane. 3. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies [J]. Chemical Physics Letters, 1993, 209(5/6):547-556
    [6] [8] Horie O, Moortgat G K. Gas-phase ozonolysis of alkenes. Recent advances in mechanistic investigations [J]. Accounts of Chemical Research, 1998, 31(7):387-396
    [7] [9] Kroll J H, Sahay S R, Anderson J G, et al. Mechanism of HO<em>x formation in the gas-phase ozone-alkene reaction. 2. Prompt versus thermal dissociation of carbonyl oxides to form OH [J]. Journal of Physical Chemistry A, 2001, 105(18):4446-4457
    [8] [10] Kroll J H, Donahue N M, Cee V J, et al. Gas-phase ozonolysis of alkenes: Formation of OH from anti carbonyl oxides [J]. Journal of American Chemical Society, 2002, 124(29):8518-8519
    [9] [11] Hatakeyama S, Akimoto H. Reactions of criegee intermediates in the gas phase [J]. Research on Chemical Intermediates, 1994, 20(3/5):503-524
    [10] [12] Fenske J D, Hasson A S, Ho A W, et al. Measurement of absolute unimolecular and bimolecular rate constants for CH3CHOO generated by the trans-2-butene reaction with ozone in the gas phase [J]. Journal of Physical Chemistry A, 2000, 104(44):9921-9932
    [11] [13] Tobias H J, Ziemann P J. Kinetics of the gas-phase reactions of alcohols, aldehydes, carboxylic acids, and water with the C13 stabilized criegee intermediate formed from ozonolysis of 1-tetradecene [J]. Journal of Physical Chemistry A, 2001, 105(25):6129-6135
    [12] [14] Horie O, Neeb P, Limbach S, et al. Geophysical formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour [J]. Geophysical Research Letters, 1994, 21(44):1523-1526
    [13] [15] Tobias H J, Docherty K S, Beving D E, et al. Effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and O3 [J]. Environmental Science & Technology, 2000, 34(11):2116-2125
    [14] [16] Baker J, Aschmann S M, Arey J, et al. Reactions of stabilized criegee intermediates from the gas-phase reactions of O3 with selected alkenes [J]. International Journal of Chemical Kinetics, 2002, 34(2):73-85
    [15] [17] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions [J]. Chemical Physics Physical Chemistry, 2002, 3(2):215-221
    [16] [18] Tillmann R, Hallquist M, Jonsson A M, et al. Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene[J]. Atmospheric Chemistry and Physics, 2010, 10: 7057-7072 DOI:10.5194/acp-10-7057-2010
    [17] [19] Neeb P, Horie O, Moortgat G K. Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds [J]. International Journal of Chemical Kinetics, 1996, 28(10):721-730
    [18] [20] Tobias H J, Ziemann P J. Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids [J]. Environmental Science & Technology, 2000, 34(11):2105-2115
    [19] [21] Ziemann P J. Formation of alkoxyhydroperoxy aldehydes and cyclic peroxyhemiacetals from reactions of cyclic alkenes with O3 in the presence of alcohols [J]. Journal of Physical Chemistry A, 2003, 107(12):2048-2060
    [20] [22] Winterhalter R, Neeb P, Grossmann D, et al. Products and mechanism of the gas phase reaction of ozone with β-pinene [J]. Journal of Atmospheric Chemistry, 2000, 35(2):165-197
    [21] [23] Docherty K S, Ziemann P J. Effects of stabilized criegee intermediate and OH radical scavengers on aerosol formation from reactions of β-pinene with O3 [J]. Atmospheric Science & Technology, 2003, 37(11):877-891
    [22] [24] Taatjes C A, Meloni G, Selby T M, et al. Direct observation of the gas-phase criegee intermediate (CH2OO) [J]. Journal of American Chemical Society, 2008, 130 (36): 11883-11885
    [23] [25] Welz O, Savee J D, Osborn D L, et al. Direct kinetic measurements of criegee intermediate (CH2OO) formed by reaction of CH2I with O2 [J]. Science, 2012, 335(6065): 204-207
    [24] [26] Finlayson B J, Pitts J N, Akimoto H. Production of vibrationally excited OH in chemiluminescent ozone-olefin reactions [J]. Chemical Physics Letters, 1972, 12(3):495-498
    [25] [27] Herron J T, Huie R E. Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase propene and isobutene [J]. Internatinal Journal of Chemical Kinetics, 1978, 10(10): 1019-1041
    [26] [28] Martinez R I, Herron J T, Huie R E. The mechanism of ozone-alkene reactions in the gas phase. A mass spectrometric study of the reactions of eight linear and branched-chain alkenes [J]. Journal of American Chemical Society, 1981, 103(13): 3807-3820
    [27] [29] Niki H, Maker P D, Savage C M, et al. FTIR spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetramethylethylene [J]. Journal of Physical Chemistry, 1987, 91(4):941-946
    [28] [30] Rickard A R, Johnson D, McGill C D, et al. OH yields in the gas-phase reactions of ozone with alkenes [J]. Journal of Physical Chemistry A, 1999, 103(38):7656-7664
    [29] [31] Kroll J H, Clarke J S, Donahue N M, et al. Mechanism of HO<em>x formation in the gas-phase ozone-alkene reaction. 1. Direct, pressure-dependent measurements of prompt OH yields [J]. Journal of Physical Chemistry A, 2001, 105(9):1554-1560
    [30] [32] Presto A A, Donahue N M. Ozonolysis fragment quenching by nitrate formation:The pressure dependence of prompt OH radical formation [J]. Journal of Physical Chemistry A, 2004, 108(42):9096-9104
    [31] [33] Drozd G T, Kroll J H, Donahue N M. 2,3-dimethyl-2-butene (TME) ozonolysis: Pressure dependence of stabilized criegee intermediates and evidence of stabilized vinyl hydroperoxides [J]. Journal of Physical Chemistry A, 2011, 115(2):161-166
    [32] [34] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From air pollution to climate change [M]. USA:Wiley-Interscience, 1998, 647-649
    [33] [35] Kanakidou M, Seinfeld J H, Pandis S N, et al. Organic aerosol and global climate modelling: A review [J]. Atmospheric Chemical Physics 2005, 5(4):1053-1123
    [34] [36] Winterhalter R, Dingenen R Van, Larsen B R, et al. LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH radicals [J]. Atmospheric Chemical Physics Discussion, 2003, 3:1-39
    [35] [37] Koch S, Winterhalter R, Uherek E. Formation of new particles in the gas-phase ozonolysis of monoterpenes [J]. Atmosphere Environment, 2000, 34(23):4031-4042
    [36] [38] Jenkin M E, Shallcross D E, Harvey J N. Development and application of a possible mechanism for the generation of cis-pinic acid from the ozonolysis of α- and β-pinene [J]. Atmosphere Environment, 2000, 34(18): 2837-2850
    [37] [39] Christoffersen T S, Hjorth J, Horie O, et al. Cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of a-pinene [J]. Atmosphere Environment, 1998, 32(10):1657-1661
    [38] [40] Jaoui M, Kamens R M. Mass balance of gaseous and particulate products from β-pinene/O3/air in the absence of light and β-pinene/NO<em>x/air in the presence of natural sunlight [J]. Journal of Atmospheric Chemistry, 2003, 45(2):101-141
    [39] [41] Ma Y, Russell A T, Marston G. Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene [J]. Physical Chemistry Chemical Physics, 2008, 10(29):4294-4312
    [40] [42] Kückelmann U, Warscheid S, Hoffmann T. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry [J]. Analytic Chemistry, 2000, 72(8):1905-1912
    [41] [43] Claeys M, Iinuma Y, Szmigielski R, et al. Terpenylic acid and related compounds from the oxidation of aPinene: Implications for new particle formation and growth above forests[J]. Environmental Science & Technology, 2009, 41(18): 6976-6982
    [42] [44] Gao Y Q, Wiley A H,IV,Murray V J, et al. Molecular composition of monoterpene secondary organic aerosol at low mass loading[J]. Environmental Science & Technology, 2010, 44(20): 7897-7902
    [43] [45] Edney E O, Kleindienst T E, Conver T S, et al. Polar organic oxygenates in PM2.5 at a southeastern site in the United States [J]. Atmosphere Environment, 2003, 37(28): 3947-3965
    [44] [46] Kubátová A, Vermeylen R, Claeys M, et al. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds [J]. Atmosphere Environment, 2000, 34(29/30):5037-5051
    [45] [47] Claeys M, Szmigielski R, Kourtchev I, et al. Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene [J]. Environmental Science & Technology, 2007, 41(5):1628-1634
    [46] [48] Iinuma Y, oge O B, Gnauk T, et al. Aerosol chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products [J]. Atmospheric Environment, 2004, 38(5): 761-773
    [47] [49] Tolocka M P, Jang M, Ginter J M, et al. Formation of oligomers in secondary organic aerosol [J]. Environmental Science & Technology, 2004, 38(5):1428-1434
    [48] [50] Gao S, Keywood M, Ng N L, et al. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene [J]. Journal of Atmospheric Chemistry, 2004, 108(46):10147-10164
  • 加载中
计量
  • 文章访问数:  2991
  • HTML全文浏览数:  2744
  • PDF下载数:  961
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-04-11
袁成, 马嫣, 陈敏东. 烯烃气相臭氧化反应机理的研究进展[J]. 环境化学, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
引用本文: 袁成, 马嫣, 陈敏东. 烯烃气相臭氧化反应机理的研究进展[J]. 环境化学, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
YUAN Cheng, MA Yan, CHEN Mindong. Advances in the studies of the mechanisms of gas-phase alkene ozonolysis[J]. Environmental Chemistry, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001
Citation: YUAN Cheng, MA Yan, CHEN Mindong. Advances in the studies of the mechanisms of gas-phase alkene ozonolysis[J]. Environmental Chemistry, 2013, 32(2): 177-187. doi: 10.7524/j.issn.0254-6108.2013.02.001

烯烃气相臭氧化反应机理的研究进展

  • 1. 江苏省大气环境监染控制高技术研究重点实验室, 南京信息工程大学环境科学与工程学院, 南京, 210044
基金项目:

国家自然科学基金项目(40905057)

江苏省属高校自然科学研究项目(09KJB170004)资助.

摘要: 气相条件下的烯烃臭氧化反应是大气中极其重要的反应之一,是多种自由基以及二次有机气溶胶的重要来源,与大气环境和人类生活密切相关.综合以往的研究成果,对早期提出的Criegee机理做了简介,着重阐述了Criegee中间体(CI)的结构及其相关反应、羟自由基的形成机理及萜烯臭氧化形成二次有机气溶胶产物的机理.最后,对未来的研究方向进行了探讨.

English Abstract

参考文献 (48)

返回顶部

目录

/

返回文章
返回