[1] Drinnenberg I A, Weinberg D E, Xie K T, et al. RNAi in budding yeast[J]. Science, 2009, 326(5952): 544-550
[2] Hamilton A, Voinnet O, Chappell L, et al. Two classes of short interfering RNA in RNA silencing[J]. EMBO Journal, 2002, 21(17): 4671-4679
[3] Ambros V, Lee R C, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C-elegans[J]. Current Biology, 2003, 13(10): 807-818
[4] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe[J]. Nature Reviews Genetics, 2009, 10(2): 94-108
[5] Yang N, Kazazian H H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells[J]. Nature Structural & Molecular Biology, 2006, 13(9): 763-771
[6] Halic M, Moazed D. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation[J]. Cell, 2010, 140: 504-516
[7] Lee H C, Chang S S, Choudhary S. qiRNA is a new type of small interfering RNA induced by DNA damage[J]. Nature, 2009, 459: 274-277
[8] Cheloufi S, Dos Santos C O, Chong M M W, et al. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis[J]. Nature, 2010, 465(7298): 584-U76
[9] Cifuentes D, Xue H L, Taylor D W, et al. A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity[J]. Science, 2010, 328(5986): 1694-1698
[10] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880): 1185-1190
[11] Chan S W L, Zilberman D, Xie Z X, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336-1336
[12] Khraiwesh B, Arif M A, Seumel G I, et al. Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140: 111-122
[13] Okamura K, Liu N, Lai E C. Distinct mechanisms for microRNA strand selection by drosophila argonautes[J]. Molecular Cell, 2009, 36(3): 431-444
[14] Czech B, Zhou R, Erlich Y, et al. Hierarchical rules for argonaute loading in drosophila[J]. Molecular Cell, 2009, 36(3): 445-456
[15] Vasudevan S, Tong Y C, Steitz J A. Switching from repression to activation: MicroRNAs can up-regulate translation[J]. Science, 2007, 318: 1931-1934
[16] Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling[J]. Cell, 2007, 129(3): 617-631
[17] Treiber T, Meister G. SMADs stimulate miRNA processing[J]. Molecular Cell, 2010, 39(3): 315-316
[18] Das S K, Sokhi U K, Bhutia S K, et al. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11948-11953
[19] Viswanathan S R, Daley G Q. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140(4): 445-449
[20] Heo I, Joo C, Kim Y K, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation[J]. Cell, 2009, 138(4): 696-708
[21] Suzuki H I, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53[J]. Nature, 2009, 460(7254): 529-U111
[22] Le M T N, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53[J]. Genes & Development, 2009, 23(7): 862-876
[23] Hu W W, Chan C S, Wu R, et al. Negative regulation of tumor suppressor p53 by MicroRNA miR-504[J]. Molecular Cell, 2010, 38(5): 689-699
[24] Yoshikawa M, Peragine A, Park M Y, et al. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis[J]. Gene & Development, 2005, 19(18): 2164-2175
[25] Cuperus J T, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis[J]. Nature Structural & Molecular Biology, 2010, 17(8): 997-U111
[26] Batista P J, Ruby J G, Claycomb J M, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C-elegans[J]. Molecular Cell, 2008, 31(1): 67-78
[27] Ghildiyal M, Seitz H, Horwich M D, et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells[J]. Science, 2008, 320(5879): 1077-1081
[28] Li X, Cassidy J J, Reinke C A, et al. A microRNA imparts robustness against environmental fluctuation during development[J]. Cell, 2009, 137: 273-282
[29] Ryan B M, Robles A I, Harris C C. Genetic variation in microRNA networks: the implications for cancer research[J]. Nature Reviews Cancer, 2010, 10(6): 389-402
[30] Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005, 120(5): 635-647
[31] Iliopoulos D, Hirsch H A, Struhl K. An epigenetic switch involving NF-kappa B, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation[J]. Cell, 2009, 139(4): 693-706
[32] Yu Z R, Willmarth N E, Zhou J E, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8231-8236
[33] Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis[J]. Cell, 2009, 137(6): 1032-1046
[34] Smith J A, White E A, Sowa M E, et al. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3752-3757
[35] Grimm D, Streetz K L, Jopling C L, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways[J]. Nature, 2006, 441(7092): 537-541
[36] Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival[J]. Journal of Gastrointestinal Surgery, 2008, 12(12): 2171-2176
[37] Yang L D, Belaguli N, Berger D H. MicroRNA and colorectal cancer[J]. World Journal of Surgery, 2009, 33(4): 638-646
[38] He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene[J]. Nature, 2005, 435(7043): 828-833
[39] Medina P P, Nolde M, Slack F J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 467(7311): 86-U119
[40] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3): 189-198
[41] Schetter A J, Leung S Y, Sohn J J, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J]. JAMA-Journal of the American Medical Association, 2008, 299(4): 425-436
[42] Gilbert W. Origin of life: The RNA World[J]. Nature, 1986, 319(6055): 618
[43] Ng K, Pullirsch D, Leeb M, et al. Xist and the order of silencing[J]. EMBO Reports, 2007, 8(1): 34-39
[44] Wang L L, Zhang Z F, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation[J]. Human Reproduction, 2009, 24(3): 562-579
[45] Chen T. MicroRNA biomarkers for carcinogen exposure in rodents[J]. Toxicology Letters, 2009, 189(Sp. Iss. SI): S151-S151
[46] Koufaris C, Wright J, Currie R, et al. Carcinogenic and non-carcinogenic doses of phenobarbital cause distinct microrna profiles in male Fischer rats after 14 days of dietary exposure[J]. Toxicology, 2009, 262(1): 16-17
[47] Maes O C, An J, Sarojini H, et al. Changes in microRNA expression patterns in human fibroblasts after Low-LET radiation[J]. Journal of Cellular Biochemistry, 2008, 105(3): 824-834
[48] Cho H, Kim S J, Park H W, et al. A relationship between miRNA and gene expression in the mouse Sertoli cell line after exposure to bisphenol A[J]. Biochip Journal, 2010, 4(1): 75-81
[49] Davidson E H. The regulatory genome: gene regulatory networks in development and evolution[M]. New York: Academic Press, 2006: 127-127