小分子RNA及其在化学品毒理学中应用的展望

徐挺, 尹大强. 小分子RNA及其在化学品毒理学中应用的展望[J]. 环境化学, 2011, 30(1): 189-193.
引用本文: 徐挺, 尹大强. 小分子RNA及其在化学品毒理学中应用的展望[J]. 环境化学, 2011, 30(1): 189-193.
XU Ting, YIN Daqiang. THE PERSPECTIVE OF SMALL RNAS AND THEIR APPLACATION IN TOXICOLOGY OF CHEMICALS[J]. Environmental Chemistry, 2011, 30(1): 189-193.
Citation: XU Ting, YIN Daqiang. THE PERSPECTIVE OF SMALL RNAS AND THEIR APPLACATION IN TOXICOLOGY OF CHEMICALS[J]. Environmental Chemistry, 2011, 30(1): 189-193.

小分子RNA及其在化学品毒理学中应用的展望

  • 基金项目:

    国家自然科学基金(20777055)资助.

THE PERSPECTIVE OF SMALL RNAS AND THEIR APPLACATION IN TOXICOLOGY OF CHEMICALS

  • Fund Project:
  • 摘要: 小分子RNA,包括siRNA、miRNA、piRNA等,在基因表达调控过程中扮演了至关重要的角色.对小分子RNA生物发生和功能的认知将有助于促进基因沉默的机制研究和基因治疗.本文归纳了近些年关于小分子RNA的重大研究成果以及应用于毒理学研究的案例,并对毒理学未来研究小分子RNA的重点和方向作出展望.
  • 加载中
  • [1] Drinnenberg I A, Weinberg D E, Xie K T, et al. RNAi in budding yeast[J]. Science, 2009, 326(5952): 544-550
    [2] Hamilton A, Voinnet O, Chappell L, et al. Two classes of short interfering RNA in RNA silencing[J]. EMBO Journal, 2002, 21(17): 4671-4679
    [3] Ambros V, Lee R C, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C-elegans[J]. Current Biology, 2003, 13(10): 807-818
    [4] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe[J]. Nature Reviews Genetics, 2009, 10(2): 94-108
    [5] Yang N, Kazazian H H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells[J]. Nature Structural & Molecular Biology, 2006, 13(9): 763-771
    [6] Halic M, Moazed D. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation[J]. Cell, 2010, 140: 504-516
    [7] Lee H C, Chang S S, Choudhary S. qiRNA is a new type of small interfering RNA induced by DNA damage[J]. Nature, 2009, 459: 274-277
    [8] Cheloufi S, Dos Santos C O, Chong M M W, et al. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis[J]. Nature, 2010, 465(7298): 584-U76
    [9] Cifuentes D, Xue H L, Taylor D W, et al. A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity[J]. Science, 2010, 328(5986): 1694-1698
    [10] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880): 1185-1190
    [11] Chan S W L, Zilberman D, Xie Z X, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336-1336
    [12] Khraiwesh B, Arif M A, Seumel G I, et al. Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140: 111-122
    [13] Okamura K, Liu N, Lai E C. Distinct mechanisms for microRNA strand selection by drosophila argonautes[J]. Molecular Cell, 2009, 36(3): 431-444
    [14] Czech B, Zhou R, Erlich Y, et al. Hierarchical rules for argonaute loading in drosophila[J]. Molecular Cell, 2009, 36(3): 445-456
    [15] Vasudevan S, Tong Y C, Steitz J A. Switching from repression to activation: MicroRNAs can up-regulate translation[J]. Science, 2007, 318: 1931-1934
    [16] Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling[J]. Cell, 2007, 129(3): 617-631
    [17] Treiber T, Meister G. SMADs stimulate miRNA processing[J]. Molecular Cell, 2010, 39(3): 315-316
    [18] Das S K, Sokhi U K, Bhutia S K, et al. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11948-11953
    [19] Viswanathan S R, Daley G Q. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140(4): 445-449
    [20] Heo I, Joo C, Kim Y K, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation[J]. Cell, 2009, 138(4): 696-708
    [21] Suzuki H I, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53[J]. Nature, 2009, 460(7254): 529-U111
    [22] Le M T N, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53[J]. Genes & Development, 2009, 23(7): 862-876
    [23] Hu W W, Chan C S, Wu R, et al. Negative regulation of tumor suppressor p53 by MicroRNA miR-504[J]. Molecular Cell, 2010, 38(5): 689-699
    [24] Yoshikawa M, Peragine A, Park M Y, et al. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis[J]. Gene & Development, 2005, 19(18): 2164-2175
    [25] Cuperus J T, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis[J]. Nature Structural & Molecular Biology, 2010, 17(8): 997-U111
    [26] Batista P J, Ruby J G, Claycomb J M, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C-elegans[J]. Molecular Cell, 2008, 31(1): 67-78
    [27] Ghildiyal M, Seitz H, Horwich M D, et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells[J]. Science, 2008, 320(5879): 1077-1081
    [28] Li X, Cassidy J J, Reinke C A, et al. A microRNA imparts robustness against environmental fluctuation during development[J]. Cell, 2009, 137: 273-282
    [29] Ryan B M, Robles A I, Harris C C. Genetic variation in microRNA networks: the implications for cancer research[J]. Nature Reviews Cancer, 2010, 10(6): 389-402
    [30] Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005, 120(5): 635-647
    [31] Iliopoulos D, Hirsch H A, Struhl K. An epigenetic switch involving NF-kappa B, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation[J]. Cell, 2009, 139(4): 693-706
    [32] Yu Z R, Willmarth N E, Zhou J E, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8231-8236
    [33] Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis[J]. Cell, 2009, 137(6): 1032-1046
    [34] Smith J A, White E A, Sowa M E, et al. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3752-3757
    [35] Grimm D, Streetz K L, Jopling C L, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways[J]. Nature, 2006, 441(7092): 537-541
    [36] Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival[J]. Journal of Gastrointestinal Surgery, 2008, 12(12): 2171-2176
    [37] Yang L D, Belaguli N, Berger D H. MicroRNA and colorectal cancer[J]. World Journal of Surgery, 2009, 33(4): 638-646
    [38] He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene[J]. Nature, 2005, 435(7043): 828-833
    [39] Medina P P, Nolde M, Slack F J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 467(7311): 86-U119
    [40] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3): 189-198
    [41] Schetter A J, Leung S Y, Sohn J J, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J]. JAMA-Journal of the American Medical Association, 2008, 299(4): 425-436
    [42] Gilbert W. Origin of life: The RNA World[J]. Nature, 1986, 319(6055): 618
    [43] Ng K, Pullirsch D, Leeb M, et al. Xist and the order of silencing[J]. EMBO Reports, 2007, 8(1): 34-39
    [44] Wang L L, Zhang Z F, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation[J]. Human Reproduction, 2009, 24(3): 562-579
    [45] Chen T. MicroRNA biomarkers for carcinogen exposure in rodents[J]. Toxicology Letters, 2009, 189(Sp. Iss. SI): S151-S151
    [46] Koufaris C, Wright J, Currie R, et al. Carcinogenic and non-carcinogenic doses of phenobarbital cause distinct microrna profiles in male Fischer rats after 14 days of dietary exposure[J]. Toxicology, 2009, 262(1): 16-17
    [47] Maes O C, An J, Sarojini H, et al. Changes in microRNA expression patterns in human fibroblasts after Low-LET radiation[J]. Journal of Cellular Biochemistry, 2008, 105(3): 824-834
    [48] Cho H, Kim S J, Park H W, et al. A relationship between miRNA and gene expression in the mouse Sertoli cell line after exposure to bisphenol A[J]. Biochip Journal, 2010, 4(1): 75-81
    [49] Davidson E H. The regulatory genome: gene regulatory networks in development and evolution[M]. New York: Academic Press, 2006: 127-127
  • 加载中
计量
  • 文章访问数:  773
  • HTML全文浏览数:  756
  • PDF下载数:  361
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-07-05
徐挺, 尹大强. 小分子RNA及其在化学品毒理学中应用的展望[J]. 环境化学, 2011, 30(1): 189-193.
引用本文: 徐挺, 尹大强. 小分子RNA及其在化学品毒理学中应用的展望[J]. 环境化学, 2011, 30(1): 189-193.
XU Ting, YIN Daqiang. THE PERSPECTIVE OF SMALL RNAS AND THEIR APPLACATION IN TOXICOLOGY OF CHEMICALS[J]. Environmental Chemistry, 2011, 30(1): 189-193.
Citation: XU Ting, YIN Daqiang. THE PERSPECTIVE OF SMALL RNAS AND THEIR APPLACATION IN TOXICOLOGY OF CHEMICALS[J]. Environmental Chemistry, 2011, 30(1): 189-193.

小分子RNA及其在化学品毒理学中应用的展望

  • 1.  同济大学环境科学与工程学院长江水环境教育部重点实验室, 上海, 200092;
  • 2.  安徽大学资源与环境工程学院, 合肥, 230039
基金项目:

国家自然科学基金(20777055)资助.

摘要: 小分子RNA,包括siRNA、miRNA、piRNA等,在基因表达调控过程中扮演了至关重要的角色.对小分子RNA生物发生和功能的认知将有助于促进基因沉默的机制研究和基因治疗.本文归纳了近些年关于小分子RNA的重大研究成果以及应用于毒理学研究的案例,并对毒理学未来研究小分子RNA的重点和方向作出展望.

English Abstract

参考文献 (49)

返回顶部

目录

/

返回文章
返回