PATERSON S, MACKAY D, MCFARLANE C. A model of organic chemical uptake by plants from soil and the atmosphere[J]. Environmental Science & Technology, 1994, 28(13):2259-2266.
|
ALAHABADI A, EHRAMPOUSH M H, MIRI M, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air[J]. Chemosphere, 2017, 172:459-467.
|
CHEN P, XIAO X, MEI J, et al. Characteristic accumulation of PCDD/Fs in pine needles near an MSWI and emission levels of the MSWI in Pearl River Delta:A case study[J]. Chemosphere, 2017, 181:360-367.
|
COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2005, 40(1):45-52.
|
GROTE R, SAMSON R, ALONSO R, et al. Functional traits of urban trees:Air pollution mitigation potential[J]. Frontiers in Ecology and the Environment, 2016, 14(10):543-550.
|
KONG S, LU B, JI Y, et al. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying City, Shandong Province, China[J]. Journal of Environmental Monitoring, 2012, 14(3):791-803.
|
SCHRECK E, DAPPE V, SARRET, et al. Foliar or root exposures to smelter particles:Consequences for lead compartmentalization and speciation in plant leaves[J]. Science of the Total Environment, 2014, 476/477:667-676.
|
NATASHA, SHAHID M, DUMAT C, et al. Foliar uptake of arsenic nanoparticles by spinach:An assessment of physiological and human health risk implications[J]. Environmental Science and Pollution Research, 2019, 26(20):20121-20131.
|
LV H, CAI Q Y, JONES K C, et al. Levels of organic pollutants in vegetables and human exposure through diet:A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(1):1-33.
|
JIA J P, BI C J, ZHANG J F, et al. Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations[J]. Atmospheric Environment, 2019, 204:135-141.
|
XIONG G, ZHANG Y, DUAN Y, et al. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core[J]. Environmental Science & Pollution Research, 2017, 24(23):18953-18965.
|
CAPOZZI F, SORRENTINO M C, DI PALMA A, et al. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags[J]. Ecological Indicators, 2020, 108:10.1016/j.ecolind.2019.105727.
|
WU J S, WANG Y, QIU S J, et al. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation[J]. Science of the Total Environment, 2019, 688:673-683.
|
BARROSO P J, MARTIN J, SANTOS J L, et al. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers[J]. Science of the Total Environment, 2019, 677:484-492.
|
吴明宏, 方凤满, 姚有如, 等. 淮南市石楠叶片重金属分布特征、来源及对大气污染的指示作用[J]. 水土保持学报, 2018, 32(1):297-302.
WU M H, FANG F M, YAO Y Y, et al. Distribution characteristics, sources and indication of heavy metals in leaves of photinia in Huainan city[J]. Journal of Water and Soil Conservation, 2018, 32(1):297-302(in Chinese).
|
CINDRIC I J, ZEINER M, STARCEVIC A,et al. Metals in pine needles:Characterisation of bio-indicators depending on species[J]. International Journal of Environmental Science and Technology, 2018, 16(8):4339-4346.
|
WANG H, MAHER B A, AHMED I A, et al. Efficient removal of ultrafine particles from diesel exhaust by selected tree species:Implications for roadside planting for improving the quality of urban air[J]. Environmental Science & Technology, 2019, 53(12):6906-6916.
|
SAFARI M, RAMAVANDI B, SANATI A M, et al. Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone[J]. Journal of Environmental Management, 2018, 222:12-20.
|
刘玲, 汪承润, 方炎明. 淮南市6种典型行道树叶片富集多环芳烃(PAHs)的差异研究[J]. 生态环境学报, 2018, 27(11):2088-2094.
LIU L, WANG C R, FANG Y M. Differences in enrichment of polycyclic aromatic hydrocarbons (PAHs) in six typical street trees in Huainan City[J]. Ecology and Environment, 2018, 27(11):2088-2094(in Chinese).
|
LAZO P, STAFILOV T, QARRI F, et al. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring[J]. Ecological Indicators, 2019, 101:1007-1017.
|
PERINI K, OTTELETTELI K, GIULINI S, et al. Quantification of fine dust deposition on different plant species in a vertical greening system[J]. Ecological Engineering, 2017, 100:268-276.
|
FERNANDEV V, EICHERT T. Uptake of hydrophilic solutes through plant leaves:current state of knowledge and perspectives of foliar fertilization[J]. Critical Reviews in Plant Sciences, 2009, 28(1/2):36-68.
|
FERNANDEV V, BANAMONDE H A, JAVIER P J, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. Journal of Experimental Botany, 2017, 68(19):5293-5306.
|
郑丽荣, 韩昊. 持久性有机污染物土气交换过程及采样技术的研究进展[J]. 四川环境, 2017, 36(4):154-157.
ZHENG L R, HAN H. A review of research on processes and techniques of air-soil exchange of persistent organic pollutants[J]. Sichuan Environment, 2017, 36(4):154-157(in Chinese).
|
HOUBRAKEN M, FREDERIK V D B, BUTLER ELLIS C M, et al. Volatilisation of pesticides under field conditions:inverse modelling and pesticide fate models[J]. Pest Management Science, 2016, 72(7):1309-1321.
|
LARUE C, CASTILLO-MICHEL H, SOBANSKA S, et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles:evidence for internalization and changes in Ag speciation[J]. Journal of Hazardous Materials, 2014, 264(2):98-106.
|
KVESITADZE G, KHATISASHVILI G, SADUNISHVILI T, et al. Plants for remediation:Uptake, translocation and transformation of organic pollutants//Plants, Pollutants and Remediation[M]. Springer Netherlands, 2015.
|
ENDO H, TORII KU. Stomatal development and perspectives toward agricultural improvement[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11:5.
|
BARALDI R, NERI L, COSTA F, et al. Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation[J]. Urban Forestry & Urban Greening, 2018, 37:24-32.
|
赵辉, 郑有飞, 曹嘉晨, 等. 大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J]. 环境科学, 2017, 38(1):412-422.
ZHAO H, ZHENG Y F, CAO J C, et al. Mechanism of air ozone pollution on stomatal flux of winter wheat and its temporal and spatial pattern[J]. Environmental Science, 2017, 38(1):412-422(in Chinese).
|
WU R J, ZHENG Y F, HU C D. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone fluxresponse relationship with dynamical flux thresholds[J]. Atmospheric Environment, 2016, 142:93-103.
|
TAKAGI M, GYOKUSEN K. Light and atmospheric pollution affect photosynthesis of street trees in urban environments[J]. Urban Forestry&Urban Greening, 2004, 2(3):167-171.
|
KLEIN T, RAMON U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species[J]. Functional Ecology, 2019, 33(8):1411-1424.
|
杨浩, 韩彦莎, 仪慧兰. 二氧化硫暴露对谷子幼苗气孔运动、脯氨酸代谢和抗氧化酶系统的影响[J]. 环境科学学报, 2019, 39(8):2747-2753.
YANG H, HAN Y S, YI H L. Effects of SO2 exposure on stomatal movement, proline metabolism and antioxidant enzyme system of millet seedlings[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2747-2753(in Chinese).
|
BUCHHOLZ A. Characterization of the diffusion of non-electrolytes across plant cuticles:Properties of the lipophilic pathway[J]. Journal of Experimental Botany, 2006, 57(11):2501-2513.
|
李云桂. 典型有机污染物在植物角质层上的吸附行为与跨膜过程[D]. 杭州:浙江大学, 2011. LI Y G. Adsorption behavior and transmembrane process of typical organic pollutants on plant cuticle[D]. Hangzhou:Zhejiang University, 2011(in Chinese).
|
FERNANDEV V, GUZMAN-DELGADO P, GRACA J, et al. Cuticle structure in relation to chemical composition:Reassessing the prevailing model[J]. Frontiers in Plant Science, 2016, 7:427.
|
高森, 王亚虹, 邵惠芳, 等. 植物角质层结构组成、生物学功能及分离方法研究进展[J]. 中国农业科技导报, 2018, 20(3):46-54.
GAO S, WANG Y H, SHAO H F, et al. Research progress on structure composition, biological function and separation methods of plant cuticle[J]. Journal of Agricultural Science and Technology, 2018, 20(3):46-54(in Chineses).
|
SCHREIBER L. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities[J]. Journal of Experimental Botany, 2006, 57(11):2515-2523.
|
李晓婷, 赵晓, 王登科,等. 天然草地植物叶角质层蜡质的化学组成及其对自由放牧的响应[J]. 草业学报, 2018, 27(6):137-147.
LI X T, ZHAO X, WANG D K, et al. Chemical composition of wax in cuticle of natural grassland and its response to free grazing[J]. Acta Prataculturae Sinica, 2018, 27(6):137-147(in Chinese).
|
ALBERSHEIM P, DARVILL A, ROBERTS K, et al. Plant cell walls:From chemistry to biology[M]. New York:Garland Science, 2010:430.
|
HOLLOWAY P J. Structure and histochemistry of plant-cuticular membranes:An overview The Plant Cuticle[M]. London:Academic Press, 1982:1-32.
|
LI Y, LI Q, CHEN B. Organic pollutant penetration through fruit polyester skin:A modified three-compartment diffusion model[J]. Scientific Reports, 2016, 6:23554.
|
柴凌燕, 董易凡, 李士伟, 等. 植物角质膜及其渗透性与抗旱性研究进展[J]. 植物研究, 2010, 30(6):763-768.
CHAI L Y, DONG Y F, LI S W, et al. Advances in studies on plant cuticle membrane and its permeability and drought resistance[J]. Bulletin of Botanical Research, 2010, 30(6):763-768(in Chinese).
|
RIEDERER M, FRIEDMANN A. Annual Plant Reviews[J]. Biology of the Plant Cuticle, 2006, 23:250-279.
|
SCHONHERR J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes[J]. Journal of Experimental Botany, 2006, 57(11):2471-2491.
|
STAIGER S, SEUFERT P, ARAND K, et al. The permeation barrier of plant cuticles:Uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds[J]. Pest Management Science, 2019,75(12):3405-3412.
|
SCHRECK E, FOUCAULT Y, SARRET G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout:mechanisms involved for lead[J]. Science of the Total Environment, 2012, 427/428(15):253-262.
|
CHAMEL A, PINERI M, ESCOUBES M. Quantitative determination of water sorption by plant cuticles[J]. Plant Cell & Environment, 2010, 14(1):87-95.
|
UZU G, SOBANSKA S, SARRET G, et al. Foliar lead uptake by Lettuce exposed to atmospheric fallouts[J]. Environmental Science & Technology, 2010, 44(3):1036-1042.
|
TRIRATNESH G, SUDHIR K P, KI-HYUN K, et al. Airborne foliar transfer of PM bound heavy metals in Cassia siamea:A less common route of heavy metal accumulation[J]. Science of the Total Environment, 2016, 573:123-130.
|
IKKA T, NISHINA Y, KAMOSHITA M, et al. Radiocesium uptake through leaf surfaces of tea plants (Camellia sinensis L.)[J]. Journal of Environmental Radioactivity, 2018, 182:70-73.
|
XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environ Geochem Health, 2014, 36(5):897-909.
|
SHAO F, WANG LH, SUN FB, et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China[J]. Science of the Total Environment, 2019, 652:939-951.
|
TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect:role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74(2):378-384.
|
EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1):151-160.
|
张罡, 安海龙, 史军娜, 等. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4):46-54.
ZHANG G, AN H L, SHI J N, et al. Deposition and absorption capacity of Populus deltoides×P.nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4):46-54(in Chinese).
|
ESPOSITO F, MEMOLI V, DI NATALE G, et al. Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb[J]. Chemosphere, 2019, 218:340-346.
|
SONG Y, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China:Source identification and size distribution[J]. Atmospheric Environment, 2015, 105(1):53-60.
|
李超群, 钟梦莹, 武瑞鑫, 等. 常见地被植物叶片特征及滞尘效应研究[J]. 生态环境学报, 2015, 24(12):2050-2055.
LI C Q, ZHONG M Y, WU R X, et al. Study on leaf characteristics and dust retention effect of common ground cover plants[J]. Ecology and Environment, 2015, 24(12):2050-2055(in Chinese).
|
LEONARD R J, MCARTHUR C, HOCHULI D F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations[J]. Urban Forestry & Urban Greening, 2016, 20:249-253.
|
王琴, 冯晶红, 黄奕, 等. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征[J]. 生态学报, 2020, 40(1):213-222.
WANG Q, FENG J H, HUANG Y, et al. Dust retention and leaf surface micromorphological characteristics of 15 species of broad-leaved arbor in Wuhan[J]. Acta Ecologica Sinica, 2020, 40(1):213-222(in Chinese).
|
杨淏舟, 李艳梅, 陈奇伯, 等. 昆明市区18种常见绿化树种叶片重金属富集特征[J]. 福建农林大学学报(自然科学版), 2017, 46(5
):584-589. YANG J Z, LI Y M, CHEN Q B, et al. Heavy metal accumulation characteristics of leaves of 18 common greening trees in Kunming City[J]. Journal of Fujian Agricultural and Forestry University (Natural Science Edition), 2017, 46(5):584-589(in Chinese).
|
LIANG J, FANG H L, ZHANG T L, et al. Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China[J]. Urban Forestry & Urban Greening, 2017, 27:390-398.
|
BURKHARDT J, BASI S, PARIYAR S, et al. Stomatal penetration by aqueous solutions-an update involving leaf surface particles[J]. New Phytologist, 2012, 196(3):774-787.
|
FERNANDEV V, BROWN P H. From plant surface to plant metabolism:The uncertain fate of foliar-applied nutrients[J]. Frontiers in Plant Science, 2013, 4:289.
|
SCHONHERR J, LUBER M. Cuticular penetration of potassium salts:Effects of humidity, anions, and temperature[J]. Plant & Soil, 2001, 236(1):117-122.
|
BONDADA B R, TU S, MA L Q. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)[J]. Science of the Total Environment, 2004, 332(1/3):61-70.
|
蔡梦凡, 信忠保, 余新晓. 人工降雨对植物颗粒物的冲刷过程研究[J]. 安全与环境学报, 2017, 17(6):2306-2312.
CAI M F, XIN Z B, YU X X. Study on the erosion process of artificial rainfall on plant particles[J]. Journal of Safety and Environment, 2017, 17(6):2306-2312(in Chinese).
|
张俊叶, 俞菲, 刘晓东, 等. 城市森林植物叶面颗粒物中重金属和多环芳烃的研究进展[J]. 中国农业科技导报, 2019, 21(10):140-147.
ZHANG J Y, YU F, LIU X D, et al. Research progress on heavy metals and polycyclic aromatic hydrocarbons in leaf particulate matter of urban forest plants[J]. Journal of Agricultural Science and Technology, 2019, 21(10):140-147(in Chinese).
|
李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系[J]. 生态学报, 2011, 31(2):565-574.
LI J J, HUANG J H, XIE S C. Plant wax and its relationship with environment[J]. Acta Ecologica Sinica, 2011, 31(2):565-574(in Chinese).
|
WANG Y Q, TAO S, JIAO X C, et al. Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing[J]. Environmental Pollution, 2008, 151(1):158-164.
|
CHIOU C T, SHENG G, MANES M. A partition-limited model for the plant uptake of organic contaminants from soil and water[J]. Environmental Science & Technology, 2001, 35(7):1437-1444.
|
RIEDERER M, DAISS A, GILBERT N, et al. Semi-volatile organic compounds at the leaf/atmosphere interface:Numerical simulation of dispersal and foliar uptake[J]. Journal of Experimental Botany, 2002, 53(375):1815-1823.
|
CHEN B, LI Y, GUO Y, et al. Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles[J]. Environmental Science & Technology, 2008, 42(5):1517-1523.
|
LI Y, CHEN B, ZHU L. Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions[J]. Environmental Pollution, 2010, 158(7):2478-2484.
|
MCLACHLAN M S. Framework for the interpretation of measurements of SOCs in plants[J]. Environmental Science & Technology, 1999, 33(11):1799-1804.
|
LICHIHEB N, PERSONNE E, BEDOS C, et al. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants[J]. Science of the Total Environment, 2016, 550:1022-1031.
|
SRIPRAPAT W, SUKSABYE P, AREEPHAK S, et al. Uptake of toluene and ethylbenzene by plants:Removal of volatile indoor air contaminants[J]. Ecotoxicology & Environmental Safety, 2014, 102(4):147-151.
|
冯驰, 赖政, 查燕, 等. 城市绿化树种叶片多环芳烃含量水平与叶片特征的关系[J]. 江苏农业科学, 2018, 46(23):366-370.
FENG C, LAI Z, CHA Y, et al. The relationship between PAHs content and leaf characteristics of urban greening tree species[J]. Jiangsu Agricultural Science, 2018, 46(23):366-370(in Chinese).
|
MONIKA M, ANETA E, BOGUSLAW W, et al. Interspecific differences in foliar PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs[J]. Environmental Monitoring and Assessment, 2016, 188(8):456.
|
KIM S J, LEE H, KWON J H. Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between isolated plant cuticles and water[J]. Science of the Total Environment, 2014, 494/495(1):113-118.
|
SHI T, TIAN K, BAO H, et al. Variation in foliar uptake of polycyclic aromatic hydrocarbons in six varieties of winter wheat[J]. Environmental Science and Pollution Research, 2017, 24(35):27215-27224.
|
MEI J, CHEN P, PENG P A. PCDD/Fs accumulation in pine needles:Variation with species and pine needle age[J]. Environmental Science and Pollution Research, 2016, 23(1):563-570.
|
LI Q, LI Y, ZHU L, et al. Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and micro-structures of cuticular waxes[J]. Scientific Reports, 2017, 7:46235.
|
HUANG S J, DAI C H, ZHOU Y Y, et al. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere:A review[J]. Environmental Science and Pollution Research, 2018, 25:16548-16566.
|
TIAN L, YIN S, MA Y G, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves:morphological characteristics have the greatest impact[J]. Science of the Total Environment, 2019, 652:1149-1155.
|
CAMEJO D, RODRIGUEZ P, ANGELES MORALES A, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J]. Journal of Plant Physiology, 2005, 162(3):281-289.
|
MORETTI C L, MATTOS L M, CALBO A G, et al. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops:A review[J]. Food Research International, 2010, 43(7):1824-1832.
|
SCHREIBER L. Effect of temperature on cuticular transpiration of isolated cuticular membranes and leaf discs[J]. Journal of Experimental Botany, 2001, 52(362):1893-1900.
|
ODABASI M, CETIN E, SOFUOGLU A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature:Application to gas-particle partitioning in an urban atmosphere[J]. Atmospheric Environment, 2006, 40:6615-6625.
|
HARNER T, SHOEIB M. Measurements of octanol-air partition coefficients(KOA) for polybrominated diphenyl ethers (PBDEs):Predicting partitioning in the environment[J]. Journal of Chemical & Engineering Data, 2002, 47(2):228-232.
|
ZHAO X G, HE M, SHANG H B, et al. Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves:A comparison with the relevant air content and evaluation of environmental parameter effects[J]. Atmospheric Environment, 2018, 181:47-53.
|
AL-DABBAS M A, ALI L A, AFAJ A H. Determination of heavy metals and polycyclic aromatic hydrocarbon concentrations in soil and in the leaves of plant (Eucalyptus) of selected locations at Kirkuk-Iraq[J]. Arabian Journal of Geosciences, 2015, 8(6):3743-3753.
|
李玉华. 衡山大气PAHs气/粒分配及降雨清除规律研究[D]. 济南:山东大学, 2012. LI Y H. Study on the distribution of PAHs in Hengshan atmosphere and the removal of rainfall[D]. Jinan:Shandong University, 2012(in Chinese).
|
CHEN L, WANG P, LIU J, et al. In situ monitoring the photolysis of fluoranthene adsorbed on mangrove leaves using fiber-optic fluorimetry[J]. Journal of Fluorescence, 2011, 21(2):765-773.
|
SUN H, SHI J, GUO S, et al. In situ determination of the depuration of three-and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces[J]. Environmental Pollution, 2016, 208:688-695.
|