植物叶面吸收污染物机制研究进展
Research progress on foliar absorption mechanism of pollutants
-
摘要: 庞大的植被是大气污染物进入地表系统的重要过滤层,植被表面是污染物与植物相互作用的界面,大气污染物跨叶面进入植物体的运输行为对解释其环境效应至关重要.植物不仅能有效地消减城市大气污染,还可用作被动采样器动态监测不同时空尺度上大气污染的水平与特征,两者均须通过叶面吸收的方式得以实现.气孔与角质层是植物叶面吸收污染物的两种主要途径,角质层因其疏水性组成、精细微观结构及与植物有机体的紧密联系,是污染物跨叶面运输过程中的重要载体.本文主要综述植物叶面吸收大气重金属、有机污染物两方面的研究,总结植物叶面吸收污染物的相关机理及其影响因素(污染物理化性质、植物叶片表面特征和环境条件),并针对目前研究的不足之处提出展望:(1)深入探究植物叶面复杂的微观形貌特征对大气污染物在叶面沉积、滞留的影响,有助于筛选具有高效吸收污染物潜力的城市绿化树种;(2)角质层不仅是运输途径,也是污染物向植物叶片迁移过程中的主要屏障,目前角质层这两方面的功能对于污染物跨叶面运输的相对贡献尚不清楚.因此有必要进一步探究植物角质层立体组成结构对污染物吸附扩散等界面行为的影响;(3)有关有机污染物在活体植物中的叶面微界面行为方面的研究比较匮乏,未来可利用原位检测技术从细胞和亚细胞水平上更加高效灵敏地跟踪、量化多种有机污染物在植物叶面及角质层内部迁移的动态过程.Abstract: Large vegetation is an important filter layer for atmospheric pollutants to enter the surface system. The surface of vegetation is the interface between pollutants and plants. The transport behavior of atmospheric pollutants across the leaf surface is crucial to explain their environmental effects. Plant foliage could not only effectively alleviate urban air pollution, but also could be used as a passive sampler to dynamically monitor air pollution levels and characteristics at different spatial and temporal scales, both of which must be realized by foliar absorption. Stomata and cuticle are two major pathways for plant leaves to absorb atmospheric pollutants. Due to its fine microstructure, hydrophobic composition and close relationship with plant organisms, the cuticle plays an important role in carrying pollutants across the leaf surface. This paper mainly reviewed the studies on the foliar absorption of heavy metals and organic pollutants, summarized the relevant mechanisms and influencing factors of foliar absorption of pollutants (physicochemical properties of pollutants, surface characteristics of plant leaves and the environmental conditions), and proposed the outlook for the future research: (1) To explore the influence of complex microscopic features of the foliage on the deposition and retention of atmospheric pollutants on the leaf surface, which was conducive to select the urban greentree species with high pollutant absorption potential. (2) Cuticle is not only a transport route, but also the main barrier in the process of pollutant migration to the plant leaves. At present, the relative contribution of the two functions of cuticle to the transport of pollutants across the foliage remained unclear. Therefore, it is necessary to further explore the effect of the three-dimensional structure of the cuticle on the interface behavior of pollutants, such as adsorption and diffusion. (3) Studies on the micro-interface behavior of organic pollutants in living plants are scarce. In the future, in-situ detection technology can be used to more efficiently and sensitively track and quantify the dynamic migration process of multiple organic pollutants on the leaf surface and inside the cuticle at the cellular and subcellular levels.
-
Key words:
- foliar absorption /
- cuticle /
- heavy metals /
- organic pollutants
-
-
[1] PATERSON S, MACKAY D, MCFARLANE C. A model of organic chemical uptake by plants from soil and the atmosphere[J]. Environmental Science & Technology, 1994, 28(13):2259-2266. [2] ALAHABADI A, EHRAMPOUSH M H, MIRI M, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air[J]. Chemosphere, 2017, 172:459-467. [3] CHEN P, XIAO X, MEI J, et al. Characteristic accumulation of PCDD/Fs in pine needles near an MSWI and emission levels of the MSWI in Pearl River Delta:A case study[J]. Chemosphere, 2017, 181:360-367. [4] COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2005, 40(1):45-52. [5] GROTE R, SAMSON R, ALONSO R, et al. Functional traits of urban trees:Air pollution mitigation potential[J]. Frontiers in Ecology and the Environment, 2016, 14(10):543-550. [6] KONG S, LU B, JI Y, et al. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying City, Shandong Province, China[J]. Journal of Environmental Monitoring, 2012, 14(3):791-803. [7] SCHRECK E, DAPPE V, SARRET, et al. Foliar or root exposures to smelter particles:Consequences for lead compartmentalization and speciation in plant leaves[J]. Science of the Total Environment, 2014, 476/477:667-676. [8] NATASHA, SHAHID M, DUMAT C, et al. Foliar uptake of arsenic nanoparticles by spinach:An assessment of physiological and human health risk implications[J]. Environmental Science and Pollution Research, 2019, 26(20):20121-20131. [9] LV H, CAI Q Y, JONES K C, et al. Levels of organic pollutants in vegetables and human exposure through diet:A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(1):1-33. [10] JIA J P, BI C J, ZHANG J F, et al. Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations[J]. Atmospheric Environment, 2019, 204:135-141. [11] XIONG G, ZHANG Y, DUAN Y, et al. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core[J]. Environmental Science & Pollution Research, 2017, 24(23):18953-18965. [12] CAPOZZI F, SORRENTINO M C, DI PALMA A, et al. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags[J]. Ecological Indicators, 2020, 108:10.1016/j.ecolind.2019.105727. [13] WU J S, WANG Y, QIU S J, et al. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation[J]. Science of the Total Environment, 2019, 688:673-683. [14] BARROSO P J, MARTIN J, SANTOS J L, et al. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers[J]. Science of the Total Environment, 2019, 677:484-492. [15] 吴明宏, 方凤满, 姚有如, 等. 淮南市石楠叶片重金属分布特征、来源及对大气污染的指示作用[J]. 水土保持学报, 2018, 32(1):297-302. WU M H, FANG F M, YAO Y Y, et al. Distribution characteristics, sources and indication of heavy metals in leaves of photinia in Huainan city[J]. Journal of Water and Soil Conservation, 2018, 32(1):297-302(in Chinese).
[16] CINDRIC I J, ZEINER M, STARCEVIC A,et al. Metals in pine needles:Characterisation of bio-indicators depending on species[J]. International Journal of Environmental Science and Technology, 2018, 16(8):4339-4346. [17] WANG H, MAHER B A, AHMED I A, et al. Efficient removal of ultrafine particles from diesel exhaust by selected tree species:Implications for roadside planting for improving the quality of urban air[J]. Environmental Science & Technology, 2019, 53(12):6906-6916. [18] SAFARI M, RAMAVANDI B, SANATI A M, et al. Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone[J]. Journal of Environmental Management, 2018, 222:12-20. [19] 刘玲, 汪承润, 方炎明. 淮南市6种典型行道树叶片富集多环芳烃(PAHs)的差异研究[J]. 生态环境学报, 2018, 27(11):2088-2094. LIU L, WANG C R, FANG Y M. Differences in enrichment of polycyclic aromatic hydrocarbons (PAHs) in six typical street trees in Huainan City[J]. Ecology and Environment, 2018, 27(11):2088-2094(in Chinese).
[20] LAZO P, STAFILOV T, QARRI F, et al. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring[J]. Ecological Indicators, 2019, 101:1007-1017. [21] PERINI K, OTTELETTELI K, GIULINI S, et al. Quantification of fine dust deposition on different plant species in a vertical greening system[J]. Ecological Engineering, 2017, 100:268-276. [22] FERNANDEV V, EICHERT T. Uptake of hydrophilic solutes through plant leaves:current state of knowledge and perspectives of foliar fertilization[J]. Critical Reviews in Plant Sciences, 2009, 28(1/2):36-68. [23] FERNANDEV V, BANAMONDE H A, JAVIER P J, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. Journal of Experimental Botany, 2017, 68(19):5293-5306. [24] 郑丽荣, 韩昊. 持久性有机污染物土气交换过程及采样技术的研究进展[J]. 四川环境, 2017, 36(4):154-157. ZHENG L R, HAN H. A review of research on processes and techniques of air-soil exchange of persistent organic pollutants[J]. Sichuan Environment, 2017, 36(4):154-157(in Chinese).
[25] HOUBRAKEN M, FREDERIK V D B, BUTLER ELLIS C M, et al. Volatilisation of pesticides under field conditions:inverse modelling and pesticide fate models[J]. Pest Management Science, 2016, 72(7):1309-1321. [26] LARUE C, CASTILLO-MICHEL H, SOBANSKA S, et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles:evidence for internalization and changes in Ag speciation[J]. Journal of Hazardous Materials, 2014, 264(2):98-106. [27] KVESITADZE G, KHATISASHVILI G, SADUNISHVILI T, et al. Plants for remediation:Uptake, translocation and transformation of organic pollutants//Plants, Pollutants and Remediation[M]. Springer Netherlands, 2015. [28] ENDO H, TORII KU. Stomatal development and perspectives toward agricultural improvement[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11:5. [29] BARALDI R, NERI L, COSTA F, et al. Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation[J]. Urban Forestry & Urban Greening, 2018, 37:24-32. [30] 赵辉, 郑有飞, 曹嘉晨, 等. 大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J]. 环境科学, 2017, 38(1):412-422. ZHAO H, ZHENG Y F, CAO J C, et al. Mechanism of air ozone pollution on stomatal flux of winter wheat and its temporal and spatial pattern[J]. Environmental Science, 2017, 38(1):412-422(in Chinese).
[31] WU R J, ZHENG Y F, HU C D. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone fluxresponse relationship with dynamical flux thresholds[J]. Atmospheric Environment, 2016, 142:93-103. [32] TAKAGI M, GYOKUSEN K. Light and atmospheric pollution affect photosynthesis of street trees in urban environments[J]. Urban Forestry&Urban Greening, 2004, 2(3):167-171. [33] KLEIN T, RAMON U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species[J]. Functional Ecology, 2019, 33(8):1411-1424. [34] 杨浩, 韩彦莎, 仪慧兰. 二氧化硫暴露对谷子幼苗气孔运动、脯氨酸代谢和抗氧化酶系统的影响[J]. 环境科学学报, 2019, 39(8):2747-2753. YANG H, HAN Y S, YI H L. Effects of SO2 exposure on stomatal movement, proline metabolism and antioxidant enzyme system of millet seedlings[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2747-2753(in Chinese).
[35] BUCHHOLZ A. Characterization of the diffusion of non-electrolytes across plant cuticles:Properties of the lipophilic pathway[J]. Journal of Experimental Botany, 2006, 57(11):2501-2513. [36] 李云桂. 典型有机污染物在植物角质层上的吸附行为与跨膜过程[D]. 杭州:浙江大学, 2011. LI Y G. Adsorption behavior and transmembrane process of typical organic pollutants on plant cuticle[D]. Hangzhou:Zhejiang University, 2011(in Chinese). [37] FERNANDEV V, GUZMAN-DELGADO P, GRACA J, et al. Cuticle structure in relation to chemical composition:Reassessing the prevailing model[J]. Frontiers in Plant Science, 2016, 7:427. [38] 高森, 王亚虹, 邵惠芳, 等. 植物角质层结构组成、生物学功能及分离方法研究进展[J]. 中国农业科技导报, 2018, 20(3):46-54. GAO S, WANG Y H, SHAO H F, et al. Research progress on structure composition, biological function and separation methods of plant cuticle[J]. Journal of Agricultural Science and Technology, 2018, 20(3):46-54(in Chineses).
[39] SCHREIBER L. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities[J]. Journal of Experimental Botany, 2006, 57(11):2515-2523. [40] 李晓婷, 赵晓, 王登科,等. 天然草地植物叶角质层蜡质的化学组成及其对自由放牧的响应[J]. 草业学报, 2018, 27(6):137-147. LI X T, ZHAO X, WANG D K, et al. Chemical composition of wax in cuticle of natural grassland and its response to free grazing[J]. Acta Prataculturae Sinica, 2018, 27(6):137-147(in Chinese).
[41] ALBERSHEIM P, DARVILL A, ROBERTS K, et al. Plant cell walls:From chemistry to biology[M]. New York:Garland Science, 2010:430. [42] HOLLOWAY P J. Structure and histochemistry of plant-cuticular membranes:An overview The Plant Cuticle[M]. London:Academic Press, 1982:1-32. [43] LI Y, LI Q, CHEN B. Organic pollutant penetration through fruit polyester skin:A modified three-compartment diffusion model[J]. Scientific Reports, 2016, 6:23554. [44] 柴凌燕, 董易凡, 李士伟, 等. 植物角质膜及其渗透性与抗旱性研究进展[J]. 植物研究, 2010, 30(6):763-768. CHAI L Y, DONG Y F, LI S W, et al. Advances in studies on plant cuticle membrane and its permeability and drought resistance[J]. Bulletin of Botanical Research, 2010, 30(6):763-768(in Chinese).
[45] RIEDERER M, FRIEDMANN A. Annual Plant Reviews[J]. Biology of the Plant Cuticle, 2006, 23:250-279. [46] SCHONHERR J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes[J]. Journal of Experimental Botany, 2006, 57(11):2471-2491. [47] STAIGER S, SEUFERT P, ARAND K, et al. The permeation barrier of plant cuticles:Uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds[J]. Pest Management Science, 2019,75(12):3405-3412. [48] SCHRECK E, FOUCAULT Y, SARRET G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout:mechanisms involved for lead[J]. Science of the Total Environment, 2012, 427/428(15):253-262. [49] CHAMEL A, PINERI M, ESCOUBES M. Quantitative determination of water sorption by plant cuticles[J]. Plant Cell & Environment, 2010, 14(1):87-95. [50] UZU G, SOBANSKA S, SARRET G, et al. Foliar lead uptake by Lettuce exposed to atmospheric fallouts[J]. Environmental Science & Technology, 2010, 44(3):1036-1042. [51] TRIRATNESH G, SUDHIR K P, KI-HYUN K, et al. Airborne foliar transfer of PM bound heavy metals in Cassia siamea:A less common route of heavy metal accumulation[J]. Science of the Total Environment, 2016, 573:123-130. [52] IKKA T, NISHINA Y, KAMOSHITA M, et al. Radiocesium uptake through leaf surfaces of tea plants (Camellia sinensis L.)[J]. Journal of Environmental Radioactivity, 2018, 182:70-73. [53] XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environ Geochem Health, 2014, 36(5):897-909. [54] SHAO F, WANG LH, SUN FB, et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China[J]. Science of the Total Environment, 2019, 652:939-951. [55] TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect:role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74(2):378-384. [56] EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1):151-160. [57] 张罡, 安海龙, 史军娜, 等. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4):46-54. ZHANG G, AN H L, SHI J N, et al. Deposition and absorption capacity of Populus deltoides×P.nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4):46-54(in Chinese).
[58] ESPOSITO F, MEMOLI V, DI NATALE G, et al. Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb[J]. Chemosphere, 2019, 218:340-346. [59] SONG Y, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China:Source identification and size distribution[J]. Atmospheric Environment, 2015, 105(1):53-60. [60] 李超群, 钟梦莹, 武瑞鑫, 等. 常见地被植物叶片特征及滞尘效应研究[J]. 生态环境学报, 2015, 24(12):2050-2055. LI C Q, ZHONG M Y, WU R X, et al. Study on leaf characteristics and dust retention effect of common ground cover plants[J]. Ecology and Environment, 2015, 24(12):2050-2055(in Chinese).
[61] LEONARD R J, MCARTHUR C, HOCHULI D F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations[J]. Urban Forestry & Urban Greening, 2016, 20:249-253. [62] 王琴, 冯晶红, 黄奕, 等. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征[J]. 生态学报, 2020, 40(1):213-222. WANG Q, FENG J H, HUANG Y, et al. Dust retention and leaf surface micromorphological characteristics of 15 species of broad-leaved arbor in Wuhan[J]. Acta Ecologica Sinica, 2020, 40(1):213-222(in Chinese).
[63] 杨淏舟, 李艳梅, 陈奇伯, 等. 昆明市区18种常见绿化树种叶片重金属富集特征[J]. 福建农林大学学报(自然科学版), 2017, 46(5 ):584-589. YANG J Z, LI Y M, CHEN Q B, et al. Heavy metal accumulation characteristics of leaves of 18 common greening trees in Kunming City[J]. Journal of Fujian Agricultural and Forestry University (Natural Science Edition), 2017, 46(5):584-589(in Chinese).
[64] LIANG J, FANG H L, ZHANG T L, et al. Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China[J]. Urban Forestry & Urban Greening, 2017, 27:390-398. [65] BURKHARDT J, BASI S, PARIYAR S, et al. Stomatal penetration by aqueous solutions-an update involving leaf surface particles[J]. New Phytologist, 2012, 196(3):774-787. [66] FERNANDEV V, BROWN P H. From plant surface to plant metabolism:The uncertain fate of foliar-applied nutrients[J]. Frontiers in Plant Science, 2013, 4:289. [67] SCHONHERR J, LUBER M. Cuticular penetration of potassium salts:Effects of humidity, anions, and temperature[J]. Plant & Soil, 2001, 236(1):117-122. [68] BONDADA B R, TU S, MA L Q. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)[J]. Science of the Total Environment, 2004, 332(1/3):61-70. [69] 蔡梦凡, 信忠保, 余新晓. 人工降雨对植物颗粒物的冲刷过程研究[J]. 安全与环境学报, 2017, 17(6):2306-2312. CAI M F, XIN Z B, YU X X. Study on the erosion process of artificial rainfall on plant particles[J]. Journal of Safety and Environment, 2017, 17(6):2306-2312(in Chinese).
[70] 张俊叶, 俞菲, 刘晓东, 等. 城市森林植物叶面颗粒物中重金属和多环芳烃的研究进展[J]. 中国农业科技导报, 2019, 21(10):140-147. ZHANG J Y, YU F, LIU X D, et al. Research progress on heavy metals and polycyclic aromatic hydrocarbons in leaf particulate matter of urban forest plants[J]. Journal of Agricultural Science and Technology, 2019, 21(10):140-147(in Chinese).
[71] 李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系[J]. 生态学报, 2011, 31(2):565-574. LI J J, HUANG J H, XIE S C. Plant wax and its relationship with environment[J]. Acta Ecologica Sinica, 2011, 31(2):565-574(in Chinese).
[72] WANG Y Q, TAO S, JIAO X C, et al. Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing[J]. Environmental Pollution, 2008, 151(1):158-164. [73] CHIOU C T, SHENG G, MANES M. A partition-limited model for the plant uptake of organic contaminants from soil and water[J]. Environmental Science & Technology, 2001, 35(7):1437-1444. [74] RIEDERER M, DAISS A, GILBERT N, et al. Semi-volatile organic compounds at the leaf/atmosphere interface:Numerical simulation of dispersal and foliar uptake[J]. Journal of Experimental Botany, 2002, 53(375):1815-1823. [75] CHEN B, LI Y, GUO Y, et al. Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles[J]. Environmental Science & Technology, 2008, 42(5):1517-1523. [76] LI Y, CHEN B, ZHU L. Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions[J]. Environmental Pollution, 2010, 158(7):2478-2484. [77] MCLACHLAN M S. Framework for the interpretation of measurements of SOCs in plants[J]. Environmental Science & Technology, 1999, 33(11):1799-1804. [78] LICHIHEB N, PERSONNE E, BEDOS C, et al. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants[J]. Science of the Total Environment, 2016, 550:1022-1031. [79] SRIPRAPAT W, SUKSABYE P, AREEPHAK S, et al. Uptake of toluene and ethylbenzene by plants:Removal of volatile indoor air contaminants[J]. Ecotoxicology & Environmental Safety, 2014, 102(4):147-151. [80] 冯驰, 赖政, 查燕, 等. 城市绿化树种叶片多环芳烃含量水平与叶片特征的关系[J]. 江苏农业科学, 2018, 46(23):366-370. FENG C, LAI Z, CHA Y, et al. The relationship between PAHs content and leaf characteristics of urban greening tree species[J]. Jiangsu Agricultural Science, 2018, 46(23):366-370(in Chinese).
[81] MONIKA M, ANETA E, BOGUSLAW W, et al. Interspecific differences in foliar PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs[J]. Environmental Monitoring and Assessment, 2016, 188(8):456. [82] KIM S J, LEE H, KWON J H. Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between isolated plant cuticles and water[J]. Science of the Total Environment, 2014, 494/495(1):113-118. [83] SHI T, TIAN K, BAO H, et al. Variation in foliar uptake of polycyclic aromatic hydrocarbons in six varieties of winter wheat[J]. Environmental Science and Pollution Research, 2017, 24(35):27215-27224. [84] MEI J, CHEN P, PENG P A. PCDD/Fs accumulation in pine needles:Variation with species and pine needle age[J]. Environmental Science and Pollution Research, 2016, 23(1):563-570. [85] LI Q, LI Y, ZHU L, et al. Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and micro-structures of cuticular waxes[J]. Scientific Reports, 2017, 7:46235. [86] HUANG S J, DAI C H, ZHOU Y Y, et al. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere:A review[J]. Environmental Science and Pollution Research, 2018, 25:16548-16566. [87] TIAN L, YIN S, MA Y G, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves:morphological characteristics have the greatest impact[J]. Science of the Total Environment, 2019, 652:1149-1155. [88] CAMEJO D, RODRIGUEZ P, ANGELES MORALES A, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J]. Journal of Plant Physiology, 2005, 162(3):281-289. [89] MORETTI C L, MATTOS L M, CALBO A G, et al. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops:A review[J]. Food Research International, 2010, 43(7):1824-1832. [90] SCHREIBER L. Effect of temperature on cuticular transpiration of isolated cuticular membranes and leaf discs[J]. Journal of Experimental Botany, 2001, 52(362):1893-1900. [91] ODABASI M, CETIN E, SOFUOGLU A. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature:Application to gas-particle partitioning in an urban atmosphere[J]. Atmospheric Environment, 2006, 40:6615-6625. [92] HARNER T, SHOEIB M. Measurements of octanol-air partition coefficients(KOA) for polybrominated diphenyl ethers (PBDEs):Predicting partitioning in the environment[J]. Journal of Chemical & Engineering Data, 2002, 47(2):228-232. [93] ZHAO X G, HE M, SHANG H B, et al. Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves:A comparison with the relevant air content and evaluation of environmental parameter effects[J]. Atmospheric Environment, 2018, 181:47-53. [94] AL-DABBAS M A, ALI L A, AFAJ A H. Determination of heavy metals and polycyclic aromatic hydrocarbon concentrations in soil and in the leaves of plant (Eucalyptus) of selected locations at Kirkuk-Iraq[J]. Arabian Journal of Geosciences, 2015, 8(6):3743-3753. [95] 李玉华. 衡山大气PAHs气/粒分配及降雨清除规律研究[D]. 济南:山东大学, 2012. LI Y H. Study on the distribution of PAHs in Hengshan atmosphere and the removal of rainfall[D]. Jinan:Shandong University, 2012(in Chinese). [96] CHEN L, WANG P, LIU J, et al. In situ monitoring the photolysis of fluoranthene adsorbed on mangrove leaves using fiber-optic fluorimetry[J]. Journal of Fluorescence, 2011, 21(2):765-773. [97] SUN H, SHI J, GUO S, et al. In situ determination of the depuration of three-and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces[J]. Environmental Pollution, 2016, 208:688-695. -

计量
- 文章访问数: 4570
- HTML全文浏览数: 4570
- PDF下载数: 115
- 施引文献: 0