[1] WANG X, JACOB D J, EASTHAM S D, et al. The role of chlorine in global tropospheric chemistry[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 3981-4003. doi: 10.5194/acp-19-3981-2019
[2] SHERWEN T, EVANS M J, SOMMARIVA R, et al. Effects of halogens on European air-quality[J]. Faraday discussions, 2017, 200: 75-100. doi: 10.1039/C7FD00026J
[3] YANG X, WANG T, XIA M, et al. Abundance and origin of fine particulate chloride in continental China[J]. Science of the total environment, 2018, 624: 1041-1051. doi: 10.1016/j.scitotenv.2017.12.205
[4] BRETON M, HALLQUIST Å M, PATHAK R K, et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas-and particle-phase Cl–VOC production[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 13013-13030. doi: 10.5194/acp-18-13013-2018
[5] FU X, WANG T, WANG S, et al. Anthropogenic emissions of hydrogen chloride and fine particulate chloride in China[J]. Environmental Science & Technology, 2018, 52(3): 1644-1654.
[6] LIU Y , FAN Q, CHEN X, et al. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2709-2724.
[7] HUANG B, LEI C, WEI C, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies[J]. Environment international, 2014, 71: 118-138. doi: 10.1016/j.envint.2014.06.013
[8] WANG Z, WANG W, THAM Y J, et al. Fast heterogeneous N2O5uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12361-12378. doi: 10.5194/acp-17-12361-2017
[9] JO H Y, LEE H J, JO Y J, et al. Nocturnal fine particulate nitrate formation by N2O5 heterogeneous chemistry in Seoul Metropolitan Area, Korea[J]. Atmospheric Research, 2019, 225: 58-69. doi: 10.1016/j.atmosres.2019.03.028
[10] BERTRAM T H, THORNTON J A, RIEDEL T P, et al. Direct observations of N2O5 reactivity on ambient aerosol particles[J]. Geophysical Research Letters, 2009, 36(19).
[11] YU C, WANG Z, XIA M, et al. Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameter[J]. Atmospheric Chemistry and Physics, 2020, 20(7): 4367-4378. doi: 10.5194/acp-20-4367-2020
[12] WANG H, CHEN X, LU K, et al. Wintertime N2O5 uptake coefficients over the North China Plain[J]. Science cdotin, 2020, 65(9): 765-774. doi: 10.1016/j.scib.2020.02.006
[13] ZHANG L, LI Q, WANG T, et al. Combined impacts of nitrous acid and nitryl chloride on lower-tropospheric ozone: new module development in WRF-Chem and application to China[J]. Atmospheric chemistry and physics, 2017, 17(16): 9733-9750. doi: 10.5194/acp-17-9733-2017
[14] ZHAO X, ZHAO X, LIU P, et al. Transport pathways of nitrate formed from nocturnal N2O5 hydrolysis aloft to the ground level in winter North China Plain[J]. Environmental Science & Technology, 2023, 57(7): 2715-2725.
[15] JO H Y, PARK J, HEO G, et al. Interpretation of the effects of anthropogenic chlorine on nitrate formation over northeast Asia during KORUS-AQ 2016[J]. Science of the Total Environment, 2023, 894: 164920. doi: 10.1016/j.scitotenv.2023.164920
[16] 黄蕾, 薛迪, 王娇, 等. 海盐非均相反应对山东沿海大气O3浓度的影响[J]. 中国环境科学, 2021, 41(11): 5036-5045. doi: 10.3969/j.issn.1000-6923.2021.11.009 HUANG L, XUE D, WANG J, et al. Impacts of heterogeneous reactions of sea salt and nitrogen-containing gases on ozone in Shandong coastal area[J]. China Environmental Science, 2021, 41(11): 5036-5045 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.11.009
[17] SIMON H, KIMURA Y, McGAUGHEY G, et al. Modeling the impact of ClNO2 on ozone formation in the Houston area[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7).
[18] YING C, WOLKE R, LIANG R, et al. A parameterization of heterogeneous hydrolysis of N2O5 for 3-D atmospheric modelling: Improvement of particulate nitrate prediction[J]. Atmospheric Chemistry and Physics Discussions, 2017.
[19] WU C, LIU L, WANG G, et al. Important contribution of N2O5 hydrolysis to the daytime nitrate in Xi'an, China during haze periods: Isotopic analysis and WRF-chem model simulation[J]. Environmental Pollution, 2021, 288: 117712. doi: 10.1016/j.envpol.2021.117712
[20] SARWAR G, SIMON H, XING J, et al. Importance of tropospheric ClNO2 chemistry across the Northern Hemisphere[J]. Geophysical Research Letters, 2014, 41(11): 4050-4058. doi: 10.1002/2014GL059962
[21] BERTRAM T H, THORNTON J A. Toward a general parameterization of N2O5 reactivity on aqueous particles: The competing effects of particle liquid water, nitrate and chloride[J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8351-8363 doi: 10.5194/acp-9-8351-2009
[22] MCCULLOCH A, AUCOTT M L, BENKOVITZ C M, et al. Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory[J]. Journal of geophysical research: atmospheres, 1999, 104(D7): 8391-8403. doi: 10.1029/1999JD900025
[23] ZHANG B, SHEN H, YUN X, et al. Global emissions of hydrogen chloride and particulate chloride from continental sources[J]. Environmental science & technology, 2022, 56(7): 3894-3904.
[24] LI S T, LIU Y M, ZHU Y Q, et al. ACEIC: a comprehensive anthropogenic chlorine emission inventory for China[J]. EGUsphere, 2024, 24(20): 11521-11544.
[25] YIN S, YI X, LI L, et al. An updated anthropogenic emission inventory of reactive chlorine precursors in China[J]. ACS Earth and Space Chemistry, 2022, 6(7): 1846-1857. doi: 10.1021/acsearthspacechem.2c00096
[26] YI X, YIN S, HUANG L, et al. Anthropogenic emissions of atomic chlorine precursors in the Yangtze River Delta region, China[J]. Science of the Total Environment, 2021, 771: 144644. doi: 10.1016/j.scitotenv.2020.144644
[27] XIA M, PENG X, WANG W, et al. Winter ClNO2 formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China[J]. Atmospheric Chemistry and Physics, 2021, 21(20): 15985-16000. doi: 10.5194/acp-21-15985-2021
[28] XIA M, WANG W, WANG Z, et al. Heterogeneous uptake of N2O5 in sand dust and urban aerosols observed during the dry season in Beijing[J]. Atmosphere, 2019, 10(4): 204. doi: 10.3390/atmos10040204
[29] THAM Y J, WANG Z, LI Q, et al. Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China[J]. Atmospheric chemistry and physics, 2016, 16(23): 14959-14977. doi: 10.5194/acp-16-14959-2016
[30] WANG X, WANG H, XUE L, et al. Observations of N2O5 and ClNO2 at a polluted urban surface site in North China: High N2O5 uptake coefficients and low ClNO2 product yields[J]. Atmospheric Environment, 2017, 156: 125-134. doi: 10.1016/j.atmosenv.2017.02.035
[31] WANG H, LU K, CHEN X, et al. High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation pathway[J]. Environmental Science & Technology Letters, 2017, 4(10): 416-420.
[32] THORNTON J A, KERCHER J P, RIEDEL T P, et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature, 2010, 464(7286): 271-274. doi: 10.1038/nature08905
[33] BANNAN T J, BOOTH A M, BACAK A, et al. The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5638-5657. doi: 10.1002/2014JD022629
[34] MIELKE L H, FURGESON A, OSTHOFF H D. Observation of ClNO2 in a mid-continental urban environment[J]. Environmental Science & Technology, 2011, 45(20): 8889-8896.
[35] OSTHOFF H D, ODAME-ANKRAH C A, TAHA Y M, et al. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia[J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6293-6315. doi: 10.5194/acp-18-6293-2018
[36] MCNAMARA S M, CHEN Q, EDEBELI J, et al. Observation of N2O5 deposition and ClNO2 production on the saline snowpack[J]. ACS Earth and Space Chemistry, 2021, 5(5): 1020-1031. doi: 10.1021/acsearthspacechem.0c00317
[37] KULJU K D, MCNAMARA S M, CHEN Q, et al. Urban inland wintertime N2O5 and ClNO2 influenced by snow-covered ground, air turbulence, and precipitation[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2553-2568. doi: 10.5194/acp-22-2553-2022
[38] WANG S Y, MCNAMARA S M, KOLESAR K R, et al. Urban snowpack ClNO2 production and fate: A one-dimensional modeling Study[J]. ACS Earth and Space Chemistry, 2020, 4(7): 1140-1148. doi: 10.1021/acsearthspacechem.0c00116
[39] HUFF D M, JOYCE P L, FOCHESATTO G J, et al. Deposition of dinitrogen pentoxide, N2O5, to the snowpack at high latitudes[J]. Atmospheric Chemistry and Physics, 2011, 11(10): 4929-4938. doi: 10.5194/acp-11-4929-2011
[40] JEONG D, McNAMARA S M, CHEN Q, et al. Quantifying the Contributions of Aerosol- and Snow-Produced ClNO2through Observations and 1D Modeling[J]. ACS Earth and Space Chemistry, 2023, 7(12): 2548-2561. doi: 10.1021/acsearthspacechem.3c00237
[41] THAM Y J, WANG Z, LI Q, et al. Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: roles of aerosol water content and chemical composition[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 13155-13171. doi: 10.5194/acp-18-13155-2018
[42] CHANG W L, BHAVE P V, BROWN S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695. doi: 10.1080/02786826.2010.551672