[1] |
CHEN Z W, TING Y C, HUANG C H, et al. Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia[J]. Science of the Total Environment, 2023, 892: 164392. doi: 10.1016/j.scitotenv.2023.164392
|
[2] |
武婷, 崔焕文, 肖咸德等, 我国典型化工行业VOCs排放特征及其对臭氧生成潜势[J]. 环境科学, 2024, 45(5): 2613-2621.
|
[3] |
HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. doi: 10.1021/acs.chemrev.8b00408
|
[4] |
WANG H, HAO R, FANG L, et al. Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J]. Science of the Total Environment, 2021, 752: 141927. doi: 10.1016/j.scitotenv.2020.141927
|
[5] |
梁欣欣, 卜龙利, 刘嘉栋等, 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160.
|
[6] |
LI X, ZHANG L, YANG Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213
|
[7] |
RAO R, MA S, GAO, B, et al. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds[J]. Journal of Colloid and Interface Science, 2023, 636: 55-72. doi: 10.1016/j.jcis.2022.12.167
|
[8] |
GUO Y, WEN M, LI G, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447. doi: 10.1016/j.apcatb.2020.119447
|
[9] |
LIU W, ZHU H, JIANG S, et al. Preparation of Au@Cu-MnO2 and its application in the catalytic oxidation of VOCs[J]. Materials Letters, 2023, 340: 134109. doi: 10.1016/j.matlet.2023.134109
|
[10] |
PENG R, SUN X, LI S, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056
|
[11] |
YE H, LIU S, YU D, et al. Regeneration mechanism, modification strategy, and environment application of layered double hydroxides: Insights based on memory effect[J]. Coordination Chemistry Reviews, 2022, 450: 214253. doi: 10.1016/j.ccr.2021.214253
|
[12] |
DAI C, WU X, WANG Q, et al. Layered double hydroxides for efficient treatment of heavy metals and organic pollutants: Recent progress and future perspectives[J]. Separation and Purification Technology, 2025, 352: 128277. doi: 10.1016/j.seppur.2024.128277
|
[13] |
CAO Y, ZHENG D, ZHANG F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review[J]. Journal of Materials Science & Technology, 2022, 102: 232-263.
|
[14] |
WANG J, XIAO X, LI J, et al. Hydrotalcite-derived Ni-LDO catalysts via new approach for enhanced performances in CO2 catalytic reduction[J]. Fuel, 2022, 324: 124491. doi: 10.1016/j.fuel.2022.124491
|
[15] |
WANG H, CHEN W, JIN W, et al. Mn mixed oxide catalysts supported on Sn-doped CoAl-LDO for low-temperature NH3-SCR electronic supplementary information (ESI) available[J]. Catalysis Science & Technology, 2023, 13(10): 3147-3157.
|
[16] |
XU Y, CHEN J, YE Z, et al. Design and optimization of CuCo-LDO catalysts via ZIF-67 sacrificial templates for enhanced toluene oxidation: A comprehensive study on morphology, structure, and catalytic activity[J]. Molecular Catalysis, 2024, 560: 114113. doi: 10.1016/j.mcat.2024.114113
|
[17] |
HAN D, MA X, YANG X, et al. Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation[J]. Journal of Colloid and Interface Science, 2021, 603: 695-705. doi: 10.1016/j.jcis.2021.06.139
|
[18] |
CHEN G, ZHANG J, WANG H, et al. Fast colloidal synthesis of SnSe2 nanosheets for flexible broad-band photodetection[J]. CrystEngComm, 2021, 23(10): 2034-2038. doi: 10.1039/D0CE01774D
|
[19] |
CHEN J, ZENG Y, ZHANG S, et al. Strong interface interaction enriched surface Co3+ cations on Co3O4-LaCoO3 composite catalyst for highly efficient toluene oxidation[J]. Molecular Catalysis, 2023, 549.
|
[20] |
SUN H, LIU Z, CHEN S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65. doi: 10.1016/j.cej.2015.02.017
|
[21] |
HAN J, ZENG H Y, XU S, et al. Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange[J]. Applied Catalysis A: General, 2016, 527: 72-80. doi: 10.1016/j.apcata.2016.08.015
|
[22] |
BRAVO J J, SUBRAMANIAM B, CHAUDHARI R V. Ultraviolet–visiblespectroscopy and temperature-programmed techniques as tools for structural characterization of Cu in CuMgAlO x mixed metal oxides[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18207-18221. doi: 10.1021/jp303631v
|
[23] |
YU J J, JIANG Z, KANG S F, et al. Influence of Cu- substituted hydrotalcite precursors and derived oxides[J]. Chinese Journal of Chemical Physics, 2005, 18(2): 251-256.
|
[24] |
JIANG Z, HAO Z, YU J, et al. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites[J]. Catalysis letters, 2005, 99(3-4): 157-163. doi: 10.1007/s10562-005-2108-6
|
[25] |
OBEID M, POUPIN C, LABAKI M, et al. CO2 methanation over LDH derived NiMgAl and NiMgAlFe oxides: Improving activity at lower temperatures via an ultrasound-assisted preparation[J]. Chemical Engineering Journal, 2023, 474: 145460. doi: 10.1016/j.cej.2023.145460
|
[26] |
LUCJAN P K, ALICJA R L, DORATA M. Roman dziembaj catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Applied Catalysis B: Environmental, 2002, 35: 195-210. doi: 10.1016/S0926-3373(01)00254-5
|
[27] |
LI Q, MENG M, ZOU Z Q, et al. Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts[J]. Journal of Hazardous Materials, 2009, 161(1): 366-372. doi: 10.1016/j.jhazmat.2008.03.103
|
[28] |
CHEN K, BAI S, LI H, et al. The Co3O4 catalyst derived from ZIF-67 and their catalytic performance of toluene[J]. Applied Catalysis A: General, 2020, 599.
|
[29] |
WANGZ Y, GUO R T, SHI X, et al. The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2020, 381.
|
[30] |
SHI Y, YI H, GAO F, et al. Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx[J]. Separation and Purification Technology, 2021, 265.
|
[31] |
WANG Z, YIN M, PANG J, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol[J]. Journal of Energy Chemistry, 2022, 72: 306-317. doi: 10.1016/j.jechem.2022.04.049
|
[32] |
ZHANG Y, WANG R. Synthesis of polymetallic oxides hollow spheres with superior activity, resistance to SO2, H2O and metal poisons for low-temperature NH3-selective catalytic reduction of NOx[J]. Separation and Purification Technology, 2024, 336.
|
[33] |
MA S, ZHAO X, LI Y, et al. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiO x (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO[J]. Applied Catalysis B: Environmental, 2019, 248: 226-238. doi: 10.1016/j.apcatb.2019.02.015
|
[34] |
JIANG Y, CHENG G, YANG R, et al. Influence of preparation temperature and acid treatment on the catalytic activity of MnO2[J]. Journal of Solid State Chemistry, 2019, 272: 173-181. doi: 10.1016/j.jssc.2019.01.031
|
[35] |
WANG Z, XU K, RUAN S, et al. Mesoporous Co–Mn spinel oxides as efficient catalysts for low temperature propane oxidation[J]. Catalysis letters, 2021, 152(9): 2695-2704.
|
[36] |
CHEN Y L, WANG X W, HE W X, et al. Fe and Cr doped porous Co3O4@C nanosheets with abundant oxygen vacancies for highly efficient oxygen evolution reaction[J]. Molecular Catalysis, 2023, 548.
|
[37] |
ZHANG L, SHI L, HUANG L, et al. Rational design of high-performance DeNO x catalysts based on Mn xCo3– xO4 nanocages derived from metal–organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. doi: 10.1021/cs401185c
|
[38] |
GUO R T, SUNX, LIU J, et al. Enhancement of the NH3-SCR catalytic activity of MnTiO x catalyst by the introduction of Sb[J]. Applied Catalysis A: General, 2018, 558: 1-8. doi: 10.1016/j.apcata.2018.03.028
|
[39] |
HUANG J, WANG W, LIU X, et al. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes[J]. Journal of Power Sources, 2018, 378: 677-684. doi: 10.1016/j.jpowsour.2018.01.029
|
[40] |
HUANG W, YAO Z, ZHAO H, et al. Modulating adsorption-oxidation dual sites and confinement structure of interlayered MnO2/defective rGO nanoreactor for efficient and stable catalytic ozonation of CH3SH[J]. Separation and Purification Technology, 2025, 354: 128824. doi: 10.1016/j.seppur.2024.128824
|
[41] |
ZHAO J, LI C, LIU X, et al. Highly efficient catalytic oxidation of toluene by amorphous/microcrystalline mixed-phase MnO2[J]. Separation and Purification Technology, 2024, 345: 127348. doi: 10.1016/j.seppur.2024.127348
|
[42] |
WU S, LIU H, HUANG Z, et al. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation[J]. Applied Catalysis B: Environmental, 2022, 312: 121387. doi: 10.1016/j.apcatb.2022.121387
|